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Abstract

This paper proposes a general weighted [? — [ norms energy minimization model to remove mixed
noise such as Gaussian-Gaussian mixture, impulse noise, Gaussian-impulse noise from the images. The
approach is built upon maximum likelihood estimation (MLE) framework and sparse representations over
a trained dictionary. Instead of optimizing the likelihood functional derived from a mixture distribution,
we present a new weighting data fidelity function which has the same minimizer as the original likelihood
functional but is much easier to optimize. The weighting function in the model can be determined by the
algorithm itself and it plays a role of noise detection in terms of the different estimated noise parameters.
By incorporating the sparse regularization of small image patches, the proposed method can efficiently
remove a variety of mixed or single noise while preserving the image textures well. In addition, a

modified K-SVD algorithm is designed to address weighted rank-one approximation. Experimental results

demonstrate its better performance compared with some existing methods.

Index Terms
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I. INTRODUCTION

We address the classical additive noise removal problem in this paper, where the noise in the images

can be modeled by
g=f+n, (1)
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where g, f,n are the observed image, clean image, and noise, respectively. In the overwhelming majority
of literature results, the noise n is supposed to be a Gaussian distribution and the L?-based fidelity term
is adopted in many denoising methods. However, in many practical applications, the performance of
imaging sensors is affected by a number of factors such as environmental conditions, sensor temperature,
atmospheric disturbance, light levels and so on. Thus the distribution of noise in images may often be
different from a single Gaussian. One may get some unsatisfactory reconstruction with existing denoising
models. Generally speaking, images contaminated by several different types noise (e.g. with different
means, variances, or even distributions), namely mixed noise, are more difficult to be restored since the
noise levels of each pixel could be far different and there is no good unified standard to measure the
similarity between the original and noisy pixels. In this paper, we shall address the mixed noise removal.
There are many methods for image denoising after several decades of developments in image restora-
tion. As mentioned before, most of them are aimed to remove either Gaussian noise or impulse noise.
For Gaussian noise removal, variational method becomes one of the most popular and powerful tools
for image restoration since the total variation (TV) was proposed in [1]. The TVL? or the so-called
ROF model [1] is a classical and well-known model to remove Gaussian noise. However, the results
obtained with TV could be over-smoothed and the image details such as textures could be removed
together with noise. In order to better preserve the image textures, the nonlocal denoising method [2], [3]
was integrated with variational method and the nonlocal TV models in [4], [5]. The nonlocal TV greatly
improves the denoising results, but the nonlocal weights in these models may be difficult to determine.
Another Gaussian noise removal approach is to use wavelet shrinkage. The high frequency coefficients
are suppressed with some given rules such as shrinking, see [6]-[10]. Sparse representation and dictionary
learning is also a highly effective image denoising technique. In [11], [12], the authors proposed a novel
method to remove additive white Gaussian noise using K-SVD for learning the dictionary from the noisy
image with gray scale images. Sparse representation models offer another powerful method to analyse
images based on the sparsity and redundancy of their representations. These models assume that there
exists a sparse linear combination of the trained dictionary for each small block of the images. This
linear combination can be learned from the noisy image itself with the K-SVD algorithm [13]. Due to its
good performance, methods based on sparse representation have been extended to color images in [14]
and nonlocal models in [15]. Based on overlapping-patches technique and sparsity, many nonlocal image
denoising methods have been proposed in very recent years, e.g. locally learned dictionaries (K-LLD)
[16], learned simultaneous sparse coding (LSSC) [15], clustering-based sparse representation (CSR) [17]

and so on. However, most of these methods only consider the Gaussian noise removal and they may not
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work well for mixed noise.

There are two common types of impulse noise: salt-and-pepper noise and random-valued noise. For
impulse noise removal, the most popular and classical method is median type filters (e.g. [18], [19]).
Different from the mean filters for Gaussian noise removal, the outputs of median filters take the median
value in each pixel neighborhood and the impulse noise can be efficiently identified and eliminated,
especially for salt-and-pepper noise. However, the median type of filters may significantly destroy the
structures of the images, such as blurring of edges and textures. In a variational setting, the data fidelity
term associated with median filters is L' norm, see [20], [21]. This model has also been extended to
deblurring problems in [22]-[25]. For images with mixed noise, these noise detectors have been combined
with sparsity regularization method to deal with Gaussian plus impulse noise, see [26]. With the sparsity
representation, the quality of the restored image is improved since texture parts can be represented through
the dictionary. However, It is worthwhile to note that methods similar to those in [21], [24]-[26] may
not work for mixed Gaussian noise.

A natural choice for mixed noise removing is to consider the combination of L', L? fidelities. For
example, we can use L? + L'+TV model to remove the Gaussian plus impulse mixed noise. However,
it is not easy to precisely determine which pixel is contaminated by Gaussian noise and which one
is contaminated by other noise. To overcome this difficulty, in [27], a kernel estimation method was
introduced to remove Gaussian and random-valued noise. The TV regularization and EM algorithm was
used in [28].

In this work, we propose a general framework to adaptively detect and remove noise of different type,
including Gaussian noise, impulse noise and more importantly, their mixtures. We derive our model from
the regularized maximum likelihood estimation (MLE) of the noise. Since the likelihood functional related
to mixed noise is not easy to be optimized compared with the functional for a single Gaussian noise, a
new functional with an additional variable is introduced. This new functional is easier to be optimized and
has the same global minimizer (or maximizer) as the original likelihood functional. By minimizing the
new functional, we obtain some weighted norms models, in which the weighting functions play the role
of noise detectors. By integrating this with sparsity representation, our model can well restore images and
textures corrupted by mixed noise. To solve the weighted rank-one approximation problem arisen from
the proposed model, a new iterative scheme is given and the low rank approximation can be obtained
by singular value decomposition (SVD). Our method integrates sparse coding-dictionary learning, image
reconstruction, noise clustering (detection), and parameters estimation into a four-step algorithm. Each

step needs to solve a minimization problem.
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The rest of the paper is organized as follows. In section II, the K-SVD denoising algorithm is briefly
reviewed. The proposed methods are given in section III. Details on theoretical aspects of the model, the
proposed algorithms and choices for initial values are discussed. Section IV contains the experimental
results. The proposed method is compared with a a number of existing models from the literature. Finally,

we conclude our method in section V.

II. BRIEF REVIEW OF THE K-SVD DENOISING ALGORITHM

The K-SVD method for removing additive homogeneous white Gaussian noise is proposed in Aharon
and Elad [11]-[13]. Since our algorithm will be built upon sparse representations, we now brief review
the main mathematical ideas of the K-SVD denoising algorithm. Let g, f € RN1*N2 be the N; x N, size
noisy and clean images, respectively. To simplify notations, we always use the lowercase letters such
as g € RNz o represent a column vector by stacking the columns of the matrix g. According to the
maximum a-posteriori probability (MAP) estimator and an assumption that each small image patch can
be sparsely represented as a linear combination of a redundant learned dictionary, the authors of [11],
[12] presented the following energy minimization problem to address the denoising problem:

1 A& N

{al;, D f*} = zggaml;l {j(a,D,f) £ 5”9 — fl3 + 5 ; |Da.; — Rif|[3 + ;Hi”a.,iﬂo} 2

In the above, each R; € R™"2*N1Nz g g binary extracting matrix which extracts niny components
from a column vector of size NyNo, that is to say, R;f stands for extracting a n; X ns patch from

R™"2XK js an unknown

the image f at coordinates (7, ) as a nyng dimensional column vector. D €
redundant dictionary (i.e. K > ming) which should be learned from the noisy image. Each column of
the dictionary D, denoting by di (k =1,2,---, K), is called an atom, and usually satisfies ||d||2 = 1
though this is not crucial. The vectors «,; € RX refer to the linear combination coefficients of these

atoms, and the [ pseudo norm is defined by
lawillo 2 #{k : ari #0,1 <k < K}, 3)

where # is the cardinality of a set. The {° pseudo norm is a sparsity measure, which counts the number

of non-zero elements in a vector. u; > 0 are some regularization parameters that control the image patch

sparsity. A is a weight parameter controls the trade-off between the data fidelity and the image prior.
The K-SVD denoising algorithm in [11], [12] is a relaxed alternating minimization method. The

problem (2) can be split into three subproblems:
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Sparse Coding:
o’ = argminJ (o, D", f*). 4)
«@

This {° minimization problem is in general NP-hard. However, it can be approximately solved by the
basis pursuit algorithms [29] such as the orthonormal matching pursuit (OMP) [30], [31]. Other recently
proposed methods can also be employed such as the algorithms in [32]-[34].

Dictionary Learning:

D" = argmin J ("™, D, f¥). (5)
D,||dx|]2=1

Instead of directly solving this constrained quadratic optimization, the K-SVD algorithm is to iteratively
update a column of D by solving a rank-one approximation of (5). More details about the K-SVD
algorithm, please see [13].

Reconstruction:

Y = argming (o, D £). (6)
f
This subproblem has a closed-form solution
N N
F=T+2> RIR) g+ 2> _RIDa’ ). (7)
i=1 i=1

As mentioned earlier, the K-SVD denoising algorithm in [11], [12] is built on the assumption that
the noise is Gaussian. It may not work well for mixed noise. Moreover, the performance of this model
depends on the choice of the parameters which related to the noise variance. In [11], [12], the noise
variance are supposed to be known. In the next, we shall propose a general framework to remove mixed

noise with sparse representations.

III. THE PROPOSED METHOD
A. The Probability Density Functions of Mixed Noise

We focus on additive mixed noise removal via energy minimization method. For real images, the
probability density function (PDF) is often not a single standardized distribution such as Gaussian. Thus
its MLE is often difficult to solve. Here we consider the case that the noise is sampled from several
different distributions. This mixed noise in images is more difficult to remove than the standardized
Gaussian noise. In this paper, we address this issue and give a general framework for restoring images

corrupted by mixed noise.
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Suppose the mixed noise n € RV 2 is constituted by M different groups n;,1 = 1,2,---, M, each
n; is some realizations of a random variable 9, with PDF p;(x), and the ratio of each n; is r;. Here
7| satisfies Zf‘i ;71 = 1. Similarly, n can also be regarded as some realizations of a random variable 9
whose PDF is p(z). With these assumptions, one can get the PDF of mixed noise

M
px) = rp(). (8)

=1

In this paper, we suppose all values of the pixels in the original and observed images range from

[0,255]. A special mixed noise is the Gaussian noise plus impulse noise. For such noise model, it can

be written as
. ny, with probability 1 — 7, ©)
ng, with probability 7,

where n; is the Gaussian noise and ng is the changed pixels values by the impulsive process. Thus no

is a uniformly distributed random number in intensity range [0,255] for random-valued noise and has

a value at either 0 or 255 for the salt-and-pepper noise. In real scenario, the noise model maybe more

complicated than (9), here (9) is a theoretical formulation with some mathematical simplifications. It can
be proven that

Proposition 1: the PDFs of Gaussian plus random-valued noise and Gaussian plus salt-and-pepper

noise have the following expression respectively,
p() = (1= r)pi(@) + 55 277" paly) dy, (10)
(1 =7)p1(x) + gp2(—7) + 5p2(255 — ),
where p; is a Gaussian function and p» is the PDF of the clean image f, which is a compactly supported
function with support [0, 255], i.e. p2(y) = 0 when y ¢ [0, 255].

Proof: The proof is similar to the one given in appendix A in [35]. For brevity, we omit it here.

For another special mixed noise, namely impulse noise, its PDF has been analyzed in [27], [35] etc.,
and the mixture model p(x) in (8) is a general formulation since it can represent any mixed noise such
as Gaussian-Gaussian, Gaussian-impulse, Gaussian-Poisson and so on.

Once the PDF of noise is known, a natural way to construct the fidelity term for image denoising
is MLE. However, a direct use of the MLE method would lead to a log-likelihood functional which is
difficult to be optimized in the case of mixed noise. For instance, by the independent assumption and
mixture model (8), one can get the log-likelihood functional

N M N M
L(£,0)=m]]D rmlgi— fi) =D > npigi— fi), (11
=1

i=11=1 =1 =
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where N = N; N, is the total number of the pixels, and ® is a parameter vector of the distributions.
Here L is not easy to be efficiently maximized since the the existing of In-sum operator. For Gaussian
mixture (i.e. each p; is a Gaussian function), a classical approach to solve this optimization problem is
the well-known expectation-maximization (EM) algorithm [35], [36]. Here we give another method to
address this problem for the MLE of general mixture model. This method is intuitive and built upon

continuous constraint optimization. We shall use it to design the denosing cost functional.

B. Optimizing the Log-likelihood Functional Indirectly

We found that the essential difficulty of optimizing £ comes from the In-sum function since the
logarithm and the summation operations are noncommutative in general. However, the commutativity of
logarithm and summation operations can be achieved under certain conditions. Based on [37]-[39], we
have the following more general property on the commutativity of log-sum operations

Proposition 2 (Commutativity of log-sum operations): Given two functions ;(x) > 0, p;(z) > 0, we
have o

—hllz;w(ﬂ?)m(x) = uénénm { Zln (x)pi(z ) + ZUZ ) In 2w (z } ; (12)
where u(x) = (uy(x),us(x), - ,up(x)) is a vector-valued function, and Ay = {u(z) : 0 < w(z) <
1,and S uy(z) = 1}.

Proof: The proof can be done using Lagrangian multiplier method.

This proposition is very useful in simplifying the optimization problem of L. More precisely, after
changing the order of log and sum operators, one obtains a new functional with more variables but which
can be efficiently minimized (e.g. quadratic problem).

We now show the details on how to apply this proposition. Considering the following minimizing
problem

min (—£(7,©)} = min {~ =, n S, (s — 1)}
= ain {5 S (g — S+ S S wa e

f7®7u€A+

(13)

Here g;, fi, and u; are the discrete representation of g(x), f(z), and wu;(x), respectively. u is a matrix
whose (i,1)-th element is u; and u € Ay means that each row of u (i.e. u;,) in A.

Let us introduce a new functional

(fv @ u Z Z ln Tlpl fl U + Z Z Uqp In Ui - (14)

i=1 [=1 i=1 [=1
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Compared with the original log-likelihood functional £(f, ®), there is an extra variable u in H. However,
minimizing H is easier than £ in most of the cases. For example, taking each p; as Gaussian function,
then H becomes quadratic with respect to f, and © has a closed-form solution.
Instead of optimizing the original MLE problem, we can turn to minimize . Usually, the minimizer
of multi-variables functional H can be obtained by the alternating algorithm:
u’ 'l =argmin H(f”,0" u),
ucA, (15)

(f7,©"+t) =argmin H(f, ©,u’*t).
e

For the above iterative scheme, we have:

Proposition 3 (Energy Descent): The sequence (f”, ®") produced by iteration scheme (15) satisfies
—L(f e < —L(f7,07). (16)

Proof: See appendix A for details.

The equation in (13) shows that both H and — L have the same minimum. However, our interest is to
know whether they have the same minimizer (not the minimum value). For this aspect, we have:

Proposition 4: Both H and —L have the same global minimizer (f*, @*).

Proof: See appendix B.

The proposition 3 can ensure that the iterative scheme (15) can at least find a local minimizer of —L.
Moreover, once we obtain the global minimizer of H by iteration (15), we know it also gives the global
minimizer of —L thanks to proposition 4.

Let us mention that the iteration (15) is essentially equivalent to the EM algorithm [35], [36], [40]:
Updating u in the first step plays a role of the E-step in the EM algorithm and the second step is the
M-step. Indeed, u;; is a probability of noise at location ¢ belongs to the [-th distribution. However, here
the theoretical foundation is totally different from the probabilistic EM algorithm. In this paper, we show
that EM algorithm is just a special alternating algorithm with some constraint conditions.

Next, we shall construct a model for mixed noise removing based on H and sparse representation.

C. Weighted Norms Model

In section III-B, we have shown that the MLE problem (i.e. to maximize £) of mixed noise can be

realized by minimizing a new functional H. By incorporating the patch-based sparsity, we propose the
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following denoising cost functional

j(a7D7u7®7f) =
N M N M
—Z ZM In (rypy(gi — fi)) + Z Zuil In u;
i=1 =1 =1 =1
N nino (17)
A S Ry (D - Rofl)
i=1 j=1 I= 1
N nins
—‘r/\zzz Zul ln Zul +ZMZHO‘
=1 j=1 [=1

In this formulation, the first and second terms are H (14), which is a global data-fitting term related
to the MLE of the mixed noise; the third and fourth terms measure the difference between each nq X ng
image patch and the approximation with an over-complete dictionary D; here the measurement is also
constructed in term of H; the last term demands the representation is sparse; A > 0 and p; > 0 are
parameters that control the trade-off between the different terms.

Equation (17) is a general functional for denoising mixed noise. For particular mixture such as
Gaussian-Possion, we only need to replace the PDF p; with the relevant expression. In this paper, we
only consider the case that each p; is a Gaussian function parameterized by variance alz, that is to say

1 z?

pi(z) = exp(——2
. 27ral2 201

The Gaussian-Gaussian mixture model would lead to a weighted [? norm which can be easily optimized.

). (18)

Taking (18) into (17), and ignoring any constant term, one can get

j(a7D7f7 u? @) =
N
sllwo (g = PIE+ 3 2k [Riw o (Do — Rif)|[3 (19)
+3 <u,1> (Ino? —2Inr) + 3 vazl <Riu,1 > (Ino? —2Inr)
+ <u,lnu >+ Zf\il < Rju,In(R;u) > ‘1’211\;1 pilleillo
where w € RY and its elements w; = f\il =4, the symbol o stands for element-wise multipli-

cation between two vectors, while u € RY*M and <, > is the Frobenius inner product, and ® =

(Uf, ‘e ,aﬁJ, r1,- -+ ,T)r) represents some statistic parameters of the noise.

D. Algorithms

We apply the relaxed alternating algorithm to iteratively minimize (19). In each iteration, one or two
variables are updated by fixing the others. More precisely, we need to solve the following four sub-

minimization problems.
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10

i. Sparse Coding and Dictionary Learning:

The first minimization problem is

(ot DY) = argminJ (e, D, f¥, u”, ®"). (20)
a,D

Applying the alternating algorithm again to this subproblem, this problem can be split into two convex
subproblems corresponding to the so-called sparse coding step and the dictionary learning step, respec-
tively. Let v be an inner iteration number, then o” ™! and D**! can be obtained by solving the following
two minimization problems iteratively:

Sparse Coding: (Conjugated OMP)

a”' T = argminJ (o, D™, f¥, u”, @) =

" N @)

arg min {% Zi:l [[W:D" o, ; — WiRifyH% + Zi:l pillov.i 0} '
[0

In the above, W; is a diagonal matrix whose diagonal elements are R;w, i.e. W; = diag(R;w). This

lp-minimization problem can be approximately solved with the OMP algorithm [30], [31] by redefining

D £ W;D and R;f” £ W,;R, f*. This process is related to a conjugated orthonormal matching pursuit,

and its convergence can be proven similarly as in [30], [31].

Dictionary Learning: (Modified K-SVD)

D" *! = argmin J(a”t!, D, f¥, u’, ®")
D,||dx||2=1
= argmin {LV, [Riwe (Da’! ~Rif")| 3}
D,[|dx||>=1 ’

(22)

Although (22) is very similar to (5) except for a weight R;w, we should note that the above problem
can not be directly solved by the K-SVD algorithm since the linear structure is significantly changed by

the non-uniform weights. We denote

W=(Rw - Ryw ).X=(Rif - Raf ). (23)
then (22) becomes
D" = argmin {|[Wo (Da"" —X")[|%}. (24)
D, ||dx|[>=1

Similar to the K-SVD learning algorithm of [13], a natural approach is to minimize each atom dj from
following energy:

dptt = ElilflgHmiIllHW o (BY — draj )% ()
kll2=
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11

In the above, the error EF £ XV — Z{iu;ﬁk d]* o) 1 This problem is known as a weighted rank-one
approximation. It is not simple and has no closed-form solution [41]. Srebro and Jaakkola [41] proposed

an iterative algorithm to address this difficulty. Their method is to solve

7 (26)

dptt = filc“lg”minHW o (B — djr o ™) + dj o™ — dyay |
kll2=1

via SVD. We note that this algorithm can not be used for the unweighted case when W = 71 is a scalar
matrix. Here we shall use another new iteration. Recall that the key idea of K-SVD algorithm is the
Gauss-Seidel iteration for matrix equations and low-rank approximations, thus the key step is to separate
the diagonal element dj from the expression. Note that there are N terms Widka,’gf_ﬂ in (22), and we
can not get a nice linear representation for dj, since each weight W; may be different. However, we can

get an approximated one via the following minimization problem

N
7% = arg min Z ||VV¢dkaZj_+1 — TdkaZj_"_lH%, 27)
=1

N i . . . .
where 7 is a scalar variable. It is easy to see that 7% = dg (%) dy. Hence, we solve the minimization
problem

dntt = E‘)Trg‘lminHW o (BF — dzlaZf_H) + Ty o/,;fl — mpdrag. |3 (28)
di||2=1

to update the atoms, where 7, = (d}*)" (E:TJV) d,'. Let us mention that the modified scheme would
reduce to the original K-SVD algorithm when all weights W; = 71 are the same.

Incorporating the sparse constraint, we get our modified K-SVD algorithm for weighted norm model
as follows:

o Select the index set of patches Sy that use atom dj, i.e. Sy = {i : azyl #0,1<i< N}

o Let 7, = (d{")7T (7217\} Wi) d,', for each image patch with index i € Sy, calculate the residual

& = WiRif" = D" i) + mdj
o Set EF € R™m™%ISk with its columns being the éf and update d;ﬁl by minimizing
(dp !, 3") = argmin ||E* — 7dy, 57| |7, (29)
lldx|l2=1.8

where 3 € RIS#|. This rank-one approximation can be solved using SVD decomposition of EF.

o Replace aZj;rl,i € S; by the relevant element of 3*.

In our experiments, we choose the inner iteration number v; = 10.

ii. Reconstruction:
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12

The minimization problem we need to solve is:

1 =argming (o, DV £ u”, @)
f

(30)
= argmin {§l}uo (g~ N3 + 3 L [Raw o (Do ~Raf)li}
Since J is quadratic with respect to f, thus
-1
FrHl = <diag(w ow)+ A Zf\il R} diag((R;w) o (Riw))Ri> 41

(diag(wo w)g + A (TN, RF diag((Raw) o (Ryw))R: ) Do’ ).
Note that every R,; is a diagonal matrix. Thus the inverse matrix in the above equation can be directly
obtained.
iii. Noise Clustering: (Expectation step)

The minimization problem we need to solve is

u! = argming (o, DY v u, @Y)
uceA,
Hlwo (g =M+ 4 X5 [Riwo (Dol —Rif* 1|3

= arg ?in +3<u,1> (In(c})” —2Inry) + A Zf\il < Rju,In(R;u) >
ucAy

(32)

+<ulhu>+3 SN <Riu,1> (In(c?)” —2Inry)
This problem has a closed-form solution. For simplicity of notations, let us denote
M2 S RIR;,

T A (g=F")o(g—fT)HAT L (RT (D" a7 —Ri f*1))o(RT (D 1ol R, f1))
L= 202(1+AMT1) ’

(33)

where the division symbol means element-wise division between two vectors. Then u”*! can be computed

by
i
o exp(—T})

v+l _
o M ry T ’ (34)
25:1 ov eXp(_ S)
iv. Parameters Estimation:
The minimization for this step is
0Tl = argmin J (o't DV UL wtl @)
G‘),E 7”;:1
1 12 L AN 1, v+1 1y(12
Lhwo (g — FIB+3 LN, IRawo Dz —Rif VI3 | (35,
= arg min +% <utl 1> (ln(a?) —2Inry)
@,Z Tl=1
N
+2 3N <Riuth 1> (In(o?) — 21n7y)
From equation g—g = 0, we get the closed-form solution of @”*1:
TV+1 . <ui?’1,1>+)\<Muﬁfl,1>
! T T <L I>H<MLI> (36)

o <u:’j1,(g—f”+1)0(g—f“+1)>+)\ Z7{\1:1<Riuffjr17(Du+1aff;r1_Rifqul)o(Dquloé.vjl_Rifu+1)>

2\v+1
(o7) <uTTA>IAL Y <R’ Ri1>
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13

E. Tuning of Initial Values and Parameters

It is well-known that the alternating algorithm may immerse at a local minimum. In addition, the quality
of the restorations is partly influenced by the choice of control parameters such as A in the model. Thus
good initial values and parameters can help us to improve the performance of the algorithm. In this
section, we first discuss the choice of initial variance of noise (07)". Tuning of the other optimization
initial values and parameters would be discussed later.

Let us begin with the following variance properties of Gaussian mixture distribution:

Proposition 5: Suppose 91 is a random variable with Gaussian mixture PDF p(x), i.e.

2

Z exp(— - ). (37)

27Tal 201

7

then its variance E(M — E(M))? = Zf\il rof.
Proof: The proof can be done through direct calculations using the definition of variance.
Proposition 6: Suppose D1; and s are two independent identically distributed random variables with

the same 2-components Gaussian mixture PDF p(z), i.e.

2

= exp(— - —)- (38)

=1 27Tal 201

7

Let 91 = p91; + pMNe, where p is a constant, then we have the variance of 91
E(M — E(M))? = p? Z Cirt rh ((2 — i)t +i03) . (39)
In general, if M= p ZHK:1 N, and each N, satisfies the independent conditions, then we have
E(M —EM))? = p? Z Clorf= rh (K —i)of + iag) . (40)

Proof: For the length limit of the paper, the proof is omitted here and we leave it to the readers.
Corollary 1: Let 9T = 9% + Ny + N3 + Ny — 4915, where each D, k = 1,--- , 5 are independent and

identically distributed with 2-components Gaussian mixture PDF, then
EM-EM))2 = i, Cird i 5 ((20 — )0} + io3)

41
+Zz o Cirtirit! ((4—1i)of+ (i +16)03) .

In particular, if r; = ro = 0.5, then

E(M — EM))? = 10(c? + 02). (42)
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Now, we present a rough variance estimation for 2-components mixed Gaussian noise using corollary

1. Denote the Laplace operator of the observed image by
Agij = Gi+1,j + 8i—1,j T 8ij+1 + 8ij—1 — 48ij- (43)

According to the noise model, one gets Ag;; — Af;; = An;;, which results in

9 Var(Ag — Af)

O'% + 05 = 10 (44)

by the corollary 1. Here ’Var’ represents the sample variance. We simply replace the left side of the
above equation by Var(Ag) since f is unknown. That is to say, we take

N, .
g izl 21 D8ij

4
10N1 Ny (43)

to roughly estimate the sum of variances of the mixed noise. Generally speaking, Var(Af) is greater
than 0 due to existence of edges and textures in the true image f, this implies that the estimated variance
o2 is always larger than the true one o} + o3. This rough estimation provides a good enough initial
parameter for our model to get some satisfactory reconstructions.

In order to get the initial (03)° and (07)°, we empirically set (¢2)° = 2(03)°. Thus we get the initial

parameter as
0 _ 0 _ o

r; =0.5, (1) =%,

2

2
: ' (46)
1 = 0.5, (03)0 =2

[\

Other initial values are selected as: D° is set to the overcomplete DCT dictionary; f° = ¢, and
ugl — O,u?’2 — 1.
According to the proposition 5 and [11], [12], the parameter A in our model is empirically set as

A= %\/m in the v-th outer iteration, and for each example R;f, the conjugated OMP
||R711U0(Rif—D0t.,i)

ning

algorithm in (21) is terminated when 2 < 1.152. Indeed, this is an implicit method to

select the sparse regularization parameter y;. Here ny X ng is the size for the extracted image patch R; f,

and in our experiments, n; X neo is set as a 8 x 8 block.

IV. EXPERIMENTAL RESULTS

Let us first give some details of the implementation of the proposed algorithm. Firstly, we do not
update R;f" during the iterations, that is to say, we keep R;f” or R;f**! as R;f® = R,g in our
algorithm. It implies that we use the noisy image ¢ to train the dictionary D. The reason for doing so
is that the error limit in the OMP should be smaller since the residual error ||R;w o (Da,; — R;f")|[3

would contain less noise as the iterative process progresses if we update f. However, this error limit is
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(a) Lena (b) Barbara (c) Boat (d) House (e) Peppers

Fig. 1. The original test images.

related to the true image f and it is an unknown. This leads to the fact that the stopping criterion of the
OMP algorithm is difficult to be chosen. Thus we keep R; f” as R;g and the main residual error to be
the noise variance in this case. Secondly, in this paper, the total number of the outer iteration number v
is set to 20 if not stated otherwise.

Fig. 1 shows five test images for our experiments: Lena(512 x 512), Barbara(512 x 512), Boat (512 X
512), House (256 x 256), and Peppers (256 x 256). In order to compare with other methods, the PSNR =
10log;q #‘E’iﬁ is used to measure the improvement of image quality. Here f* and f are the restored

image and clean image, respectively.

A. Gaussian Mixture Noise

In this experiment, the original image ’Barbara’ is contaminated by two Gaussian noise with different
standard deviations o1 = 10 and o2 = 50, respectively, while the mixture ratio is r; : ro = 0.7 : 0.3.
We implement the proposed algorithm two times with two different noise priors. In case 1, all the noise
information, including the true standard deviations (o1, 02), mixture ratio (r1,r2) and spatial distribution
(u1,u2), are supposed to be known. For such a case, we set the outer iteration number ¥ = 1 in our
algorithm and use the true noise parameters for the initialization. In case 2, none priors of noise is given
and all the parameters need to be estimated from the noisy image. The denoising results for both cases
are shown in Fig.2. As can be seen from the figure, it is understandable that the reconstructed image
in case 1 has better visual effect (preserving textures better) and higher PSNR value than the denoising
result in case 2. This is because the estimated noise parameters are often less accurate than the given true
ones. To illustrate the superiority of our model, we take the original K-SVD [12] for comparison though
it is designed for a single Gaussian distribution. According to proposition 5, for 2-components Gaussian
mixture noise, the denoising image would have the highest PSNR value when the noise variances are set

as r1o% + rgag in K-SVD algorithm. In all the experiments, the parameter of noise variances in K-SVD
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(a) Noisy (b) Ours (case 1, with (¢) Ours (case 2, with (d) K-SVD [12] (with
(PSNR=19.02) known parameters, unknown  parameters, known parameters,
PSNR=32.39) PSNR=30.07) PSNR=26.95)

Fig. 2. A comparison of denoising results under Gaussian mixture noise. For better visual effects, only part of “barbara” image

and its corresponding reconstructions are displayed.

(@) uog b) (1—u)og (c) Learned D (Case 1) (d) Learned D (Case 2) (e) Learned D (K-SVD)

Fig. 3. Some estimated variables with the proposed algorithm. From left to right: the estimated images uo g and (1 —u)og

of our method; the learned dictionaries D by the proposed algorithm and K-SVD [12], respectively.

algorithm [12] are supposed to be known as 7102 + 207, The denoised image with K-SVD are displayed
in Fig.2(d). One can see that there are some speckles in the restored image since this model can not
discriminate the pixels with different noise levels. In this experiment, our method improves the PSNR
values of the reconstructions more than 3 db. For case 2, some estimated functions and parameters by
our algorithm are shown in Fig.3 and TABLE 1. In Fig.3, one can see that the learned dictionaries by the
proposed method are less noisy and can better describe the character of “Barbara” than the K-SVD’s.
This is one of the reasons why our model can produce better denoising results than K-SVD under mixed
noise.

Let us mention that the first iteration in the proposed algorithm is exactly the K-SVD denoising
method in [12] with some initially estimated parameters. Our algorithm can improve the quality of
the reconstructions with the help of the estimated noise parameters. Figure Fig.4 illustrates parts of
the denoising images during the iterations. As can be seen from this figure, the result f! is a little

oversmoothed mainly because the initially estimated sum of the variances of noise is always larger than
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(a) initial £° (b) intermediate f! (¢) intermediate f° (d) final f2°

33 4 30

n W ) )

32 28

a1

a1 7] &
Jo0r

2B

s
¢
23 k| 25
28k —&—Lena —&—Lena — % Lena
——Barbara 8 —+—Barhara B —*Barbara
5

27k —8—Haouse —8—House —H8—House
—+—Peppers o —+—Peppers 2 —+—Peppers

—=—Boat % Boat . . —*Boat

28 22
10 15 20 o B 10 15 20 0 5 10 15 20

2B
0

() o1 = 5,020 = 30,71 : 72 = 03 : (f) 01 = 10,02 = 50,71 : 712 = 0.7 : (g) 01 = 15,02 = 75,r1 : 2 = 0.5 :
0.7 0.3 0.5

Fig. 4. First row: the denoising results f* of our algorithm. Second row: the PSNR values for the five test images versus the

iteration number. X-axis: the iteration number, Y-axis: the PSNR values.

the true one. However, our algorithm can iteratively improve the parameters of noise and it can provide
nicer results, just as shown in Fig.4(c)-4(d). To detail this development, figures in the second row of
Fig.4 illustrate the improved PSNR values versus the iteration for the five test images under different
levels noise.

More denoising results obtained by the K-SVD and ours under different levels of Gaussian mixture
noise are given in TABLE 1. For the PSNR values obtained by the proposed algorithm, all the noise
parameters are unknown and need to be estimated from the given noisy images. As for the K-SVD
algorithm in [12], the noise variances are all supposed to be known as 7“10% + ’I“QO'%. It can be seen from
this table that the proposed model still has better performance though our method is blind (all the noise

parameters need to be estimated).

B. Impulse Noise

Salt-and-pepper noise and random-valued noise are two common types of the impulse noise. Strictly
speaking, they are not additive noise. Existing methods to remove the impulse noise include median type

filters such as [18], [19], I*-norm based variational method [20]-[22], [24], [25], in which two-phase
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Images c1=5 02=30 o1 =10 o2 =50 o1=15 o02=75
1 ri:rg —  0.3:0.7 0505 0.7:03 0.3:0.7 0.5:0.5 0.7:0.3 0.3:0.7 0.5:0.5 0.7:03
Lena K-SVD 31.11 31.60 31.30 28.49 28.92 28.43 26.41 26.79 26.05
Proposed  31.43 32.69 34.24 29.00 30.43 32.07 27.04 28.57 30.36
Barbara  K-SVD 29.37 30.08 30.65 26.40 27.08 26.95 23.70 24.38 24.21
Proposed  29.19 30.50 32.69 26.46 28.15 30.07 23.75 26.20 28.22
Boat K-SVD 29.08 29.63 29.78 26.60 27.07 26.81 24.61 25.02 24.60
Proposed  28.96 29.85 31.19 26.79 27.82 29.19 25.02 26.31 27.77
House K-SVD 31.81 32.25 31.74 28.83 29.42 28.88 26.13 26.74 26.13
Proposed  32.73 33.66 34.83 30.16 31.56 33.10 27.24 29.44 31.42
Peppers  K-SVD 29.47 30.10 30.32 26.82 27.40 27.10 24.53 25.16 24.69
Proposed  29.66 30.55 31.69 27.37 28.47 29.79 25.21 26.76 28.37

TABLE I

THE PSNR VALUES OF THE DENOISED IMAGES WITH THE PROPOSED METHOD AND K-SVD [12] IN THE PRESENCE OF

GAUSSIAN MIXTURE NOISE.

methods [21], [24], [25] can provide reasonably good results. Here we shall illustrate that the proposed
model can work well for impulse noise and produce better denoising results than these mentioned methods.
The true PDFs of the impulse noise have been analyzed in our previous work [35] and it has been shown
that the PDFs can be well approximated with mixture models.

As for impulse noise, the initial u° in our algorithm can be better chosen as the output from the first

phase in the two-phase methods [24], [25], that is, uY can be set as

1, if ¢ == fmed,

0, else.
In the above expression, f™¢ is a filtered image by median-type filter. Similar to [24], [25] we can
use adaptive median filter (AMF) [18] and adaptive center-weighted median filter (ACWMEF) [42] for

salt-and-pepper noise and random-valued impulse noise detection, respectively. Besides, in order to get

to the converged solution quickly, here for impulse noise, we set the initial variances as

o2)0  — oj’
(@ =%, )
(J%)O = 91%’

where o2 is the estimated variance from the noisy images according to equation (45). This choice of
initial variances is empirical and maybe not be optimal. Our goal is to increase the difference of the

initial variances since the true one is o3 = 0.
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Images Noise density »  Noisy [42] [25] Proposed

0.1 19.27 3791 3822 38.38

Lena 0.2 1542 3495 3545 36.51
0.3 1332 3273 3349 34.42

0.4 11.99 30.24 31.37 31.75

0.5 11.62 2749 28.79 29.47

0.6 10.82 23.86 25.33 25.55

0.1 18.83 2625 2598 35.41

Barbara 0.2 15.83 25.36  25.20 33.58
0.3 14.07 2450 24.47 31.14

0.4 12.81 23.54 23.76 26.60

0.5 11.85 2237 2286 23.40

0.6 11.06 2049 21.31 21.68

0.1 19.35 37.06 37.46 40.88

House 0.2 16.28 3422 35.06 37.97
0.3 1452 3155 3245 34.36

04 13.27 29.27 30.28 30.70

0.5 1228 26.85 27.96 28.23

0.6 11.51 23.61 24.84 25.67

TABLE II

PSNR VALUES FOR DIFFERENT METHODS AND TEST IMAGES WITH RANDOM VALUED NOISE.

Since salt-and-pepper noise can be well detected by median filters and thus two-phase method can
give some good denoising results even though the salt-and-pepper noise density is as high as 90% [24],
[25]. However, random-valued noise is hard to identify and there is no good detector for it. Compared to
two-phase method, our method has a superiority that the noise estimation and denoising process are done
alternately, which means one of the two procedures can guide the other using the estimated information.
This explains why the proposed method has better performance for random-valued noise, especially when
the noise levels are high.

TABLE 1I lists some denoising results in the presence of random-valued noise. In this table, the
density of random-valued noise varies from 0.1 to 0.6. As can be seen from this table, our method gives
the best restoration with the highest PSNR values with all different noise density. Because of the sparsity
regularization of small blocks, our method significantly improves the texture preservation, see Barbara

test image in Fig.5 for more details.
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(c) Two-phase(32.45) (d) Proposed(34.36) (e) Learned D for House

(f) Noisy,r = 0.2 (g) ACWMF(25.36) (h) Two-phase(25.20) (i) Proposed(33.58)  (j) Learned D for Bar-

bara

Fig. 5. The denoising results of different methods under random-valued noise.

C. Gaussian Noise Plus Impulse Noise

We consider Gaussian plus impulse mixed noise removal in this subsection. Recall that the PDF of
Gaussian plus impulse noise has the expression (9). Specially, if we suppose the normalized histogram
of the clean image, namely ps(y), is an uniformly distributed PDF in [0, 255], then for random-valued

noise, (9) becomes

(255+x)
BSer, =255 <z <0,
p(a) = (1 —r)pi(z) +{ "0 0 <z < 255, (49)
0, else.

The above triangular-type PDF is the key point of the kernel regression method in [27] for addressing
mixture of Gaussian and random-valued noise. One can use this PDF and the framework proposed in
this paper to get a new fidelity term. However, for real images, the supposition of uniformly distributed
histogram may fail. Moreover, the indifferentiability of the triangular-type piecewise PDF would lead to
a non-smoothed minimization problem. On the other hand, our experiments show that good denoising
results also can be achieved by replacing the second part of the PDF by an easily optimized Gaussian
function. Thus the proposed method can also efficiently remove mixture of Gaussian and impulse noise.

Let us mention that if we use the two-sided exponential distribution to approximate the second part of

the PDF of the noise and when p; is the delta function, together with the total variational regularization,
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r— 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
Noisy 18.76 1576 14.04 18.43 15.61 13.95 17.94 15.38 13.81
Two-phase 2540 24777 2413 2434 2394 2345 2332 23.02 2267
ACWMD+K-SVD  26.07 2527 2451 2550 2491 2431 24.64 2419 2377
[26] 3045 2775 2595 2845 2659 2534 2733 25.69  24.55
Proposed 3297 3152 2895 3042 2832  26.30 28.37 2598  24.01
TABLE III

PSNR VALUES FOR DIFFERENT METHODS FOR THE BARBARA IMAGE WITH GAUSSIAN NOISE PLUS RANDOM VALUED

NOISE.

then our method would reduce to the two-phase method [24], [25] under some proper conditions.

TABLE III gives the denoising results of Barbara test images corrupted by Gaussian noise and random-
valued noise. In our experiment, the Gaussian noise level varies with ¢ = 5,10,15 and the density
of random-valued noise values with » = 0.1,0.2,0.3, respectively. For comparison, we test on the
performance of the median filter ACWMEF [42] plus K-SVD [12], that is, we first filter the noisy images
by ACWMF and then denoise the output of ACWMF with K-SVD. The two-phase based methods [25]
and [26] will be compared. For the tuning of parameters for different methods, in "JACWMF+K-SVD”
algorithm, the variances of Gaussian noise are all supposed to be known. We test several parameters
(including the suggested ones in [24], [25]) for the two-phase method and pick the results with the
highest PSNR in our comparisons. The choice of initial values for the proposed method is the same as
section IV-B. It can be seen that the parameters of our method do not need to be tuned manually for
different noise levels. The control parameters in the proposed method can be adaptively adjusted. This
is another advantage of our method in removing mixed noise.

To show the efficiency of the proposed method and make a comparison with other methods for some
real noisy images, the denoising results of KSVD [12], the proposed method and a wavelets-based method
BM3D [7] are shown in Fig.6. The methods in KSVD and BM3D require the true noise variance, thus in
this experiment, we use the right side of (44) to estimate the noise variance for KSVD and BM3D. For
real images, it is difficult to give an objective index such as PSNR values to evaluate the quality of the
restorations since there is no true image. However, we can give the noise removed by different methods
to make a comparison. From the noise images shown in the second row, it can be seen that the proposed

method gives better result than KSVD’s since there is less information in the noise image removed by
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(a) Real noisy image (b) KSVD [12] (c) Proposed (d) BM3D [7]

(e) Noise removed by (f) Noise removed by pro- (g) Noise removed by

KSVD posed BM3D

Fig. 6. Denoising the real Brain MR image.

the proposed algorithm. Let us mention that the proposed model would have a better performance if the
noise difference is larger. In this experiment, it seems that the BM3D has a slightly better performance
than the proposed model. This is because the noise difference in this real image is relatively small and
the BM3D method has a better performance than the dictionary learning methods. However, one can

integrate our method with BM3D to further improve the denoising result.

V. CONCLUSION AND DISCUSSION

We provide a general framework to remove mixed noise using the PDE. A method is proposed to
solve the MLE problem of mixture distribution. Though it is essentially equivalent to the well-known
EM algorithm, here we give the EM algorithm another interpretation through continuous constraint
optimization. We also further explain the connections between the classical EM algorithm and alternating
algorithm. By combining the sparsity regularization and dictionary learning techniques, a novel and
efficient model is designed to removing mixed noise such as Gaussian-Gaussian mixture noise, impulse
noise, Gaussian plus impulse noise and others. Besides, we study the variance estimation from the given
noisy images and offer a method to tune the initial parameters. This makes the proposed method to be
very practical. Our model is a general one since it can work well under Gaussian, non-Gaussian noise
and even their mixtures. Experimental results have demonstrated its better performance compared with

other related state-of-the-art algorithms.
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The computation complexity for each outer iteration in the proposed method is slightly more than
K-SVD algorithm. Thus our method is slower than some methods such as two-phase methods since
the sparse coding and dictionary learning are often time consuming. Generally speaking, for 256 x 256
images, the CPU time for one outer iteration for our method is about 40 seconds with our unoptimized
Matlab codes on a PC equipped with 3.2 GHz CPU. The sparse coding and dictionary learning steps
cost about 12 and 26 seconds, respectively. It costs less than 1 second for the reconstruction step, and
about 1 second for the noise clustering step include the parameters estimation step. It was observed that
the sparse coding and dictionary learning part are consuming the most of the computation time.

Note that our method is easy to be paralleled. Besides, fast split algorithms to solve {° minimization
algorithm can also be used to improve the computation. This will be for our future research. For sparse
coding and dictionary learning, some recently algorithms such as [33], [34] can be adopted with some
modifications for our model.

For different types of noise, the computational complexity of our algorithm for one outer iteration
is almost the same since the mathematical models are the same for different kinds of the noise. One
important factor that influences the computational cost is the noise level. Generally speaking, images
with high noise levels need more outer iterations.

Although we only discuss the L2 + L? type model in this paper, it can be seen that other LP + L4
models can also be used.

Our method has the potential to be used for images segmentation and registration. For example, a
possible extension is to segment images with non-parameterized mixture distribution with the proposed

optimization framework.
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APPENDIX A
PROOF OF PROPOSITION 3
By proposition 2, equation (13) and the first formulation of (15), we get
L @) = H(frH @vtl urt?),
—L(f, @) = H(f*,0" u'tl).

(50)
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On the other hand, the second equation in (15) provides
H(fl/+17 (_91/+17 ull+2) < H(fVJrl, @1/+17 ul/+1) < H(fu, @1/7 ul/+1), (51)

thus —L(f*+1, 0V < —L(f7,0"), and the conclusion holds.

APPENDIX B

PROOF OF PROPOSITION 4

Suppose (f*,©®*) is a global minimizer of —£L, and let u* = (u},u3,--- ,u},;) with its component
: x _ _ riplgi—f) *

function u};, = T (o ) then u* € A and
N M

H(f*, 0% u) =Y Ind rip(g — f7) = —L(f*,©). (52)
i=1 =1

Pl 1l that min—L(f, ®) = i O, u)i tion (13), th h i ,0,u) =
ease recall tha min (f,©) f7®r7ri11é1A+H(f, ,u) in equation (13), thus we have f7®rT3£A+H(f u)

—L(f*,0%) =H(f*, ®* u*), which means (f*, ©*) is a global minimizer of H.
Conversely, we assume (f*,®* u*) is a global minimizer of H but (f*,®*) is not the global
minimizer of —£, then there must be a point (f,®) such that —L£(f,©) < —L(f*, ©*). Similarly,

we let 4 = (Uq, Ug, -+, Upy) With Gy = %, one can calculate H(f,é),ﬁ) = —E(f, @) <

—L(f*,0%) = H(f*,0* u) < H(f*,©* u*), which is contradicted with the assumption. Here u =

(ty,ug, - ,up) and wy = %, the last inequality is obtained in terms of u is a minimizer
s=1"sl's K3 k3
of H(-,-,u) for fixed f*, O
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