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A Weighted Dictionary Learning Model for

Denoising Images Corrupted by Mixed Noise
Jun Liu, Xue-cheng Tai, Haiyang Huang, Zhongdan Huan

Abstract

This paper proposes a general weighted l2 − l0 norms energy minimization model to remove mixed

noise such as Gaussian-Gaussian mixture, impulse noise, Gaussian-impulse noise from the images. The

approach is built upon maximum likelihood estimation (MLE) framework and sparse representations over

a trained dictionary. Instead of optimizing the likelihood functional derived from a mixture distribution,

we present a new weighting data fidelity function which has the same minimizer as the original likelihood

functional but is much easier to optimize. The weighting function in the model can be determined by the

algorithm itself and it plays a role of noise detection in terms of the different estimated noise parameters.

By incorporating the sparse regularization of small image patches, the proposed method can efficiently

remove a variety of mixed or single noise while preserving the image textures well. In addition, a

modified K-SVD algorithm is designed to address weighted rank-one approximation. Experimental results

demonstrate its better performance compared with some existing methods.

Index Terms

Image Denoising, Sparse Representation, Mixed Noise, K-SVD, Weighted Norms

I. INTRODUCTION

We address the classical additive noise removal problem in this paper, where the noise in the images

can be modeled by

g = f + n, (1)
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where g, f, n are the observed image, clean image, and noise, respectively. In the overwhelming majority

of literature results, the noise n is supposed to be a Gaussian distribution and the L2-based fidelity term

is adopted in many denoising methods. However, in many practical applications, the performance of

imaging sensors is affected by a number of factors such as environmental conditions, sensor temperature,

atmospheric disturbance, light levels and so on. Thus the distribution of noise in images may often be

different from a single Gaussian. One may get some unsatisfactory reconstruction with existing denoising

models. Generally speaking, images contaminated by several different types noise (e.g. with different

means, variances, or even distributions), namely mixed noise, are more difficult to be restored since the

noise levels of each pixel could be far different and there is no good unified standard to measure the

similarity between the original and noisy pixels. In this paper, we shall address the mixed noise removal.

There are many methods for image denoising after several decades of developments in image restora-

tion. As mentioned before, most of them are aimed to remove either Gaussian noise or impulse noise.

For Gaussian noise removal, variational method becomes one of the most popular and powerful tools

for image restoration since the total variation (TV) was proposed in [1]. The TVL2 or the so-called

ROF model [1] is a classical and well-known model to remove Gaussian noise. However, the results

obtained with TV could be over-smoothed and the image details such as textures could be removed

together with noise. In order to better preserve the image textures, the nonlocal denoising method [2], [3]

was integrated with variational method and the nonlocal TV models in [4], [5]. The nonlocal TV greatly

improves the denoising results, but the nonlocal weights in these models may be difficult to determine.

Another Gaussian noise removal approach is to use wavelet shrinkage. The high frequency coefficients

are suppressed with some given rules such as shrinking, see [6]–[10]. Sparse representation and dictionary

learning is also a highly effective image denoising technique. In [11], [12], the authors proposed a novel

method to remove additive white Gaussian noise using K-SVD for learning the dictionary from the noisy

image with gray scale images. Sparse representation models offer another powerful method to analyse

images based on the sparsity and redundancy of their representations. These models assume that there

exists a sparse linear combination of the trained dictionary for each small block of the images. This

linear combination can be learned from the noisy image itself with the K-SVD algorithm [13]. Due to its

good performance, methods based on sparse representation have been extended to color images in [14]

and nonlocal models in [15]. Based on overlapping-patches technique and sparsity, many nonlocal image

denoising methods have been proposed in very recent years, e.g. locally learned dictionaries (K-LLD)

[16], learned simultaneous sparse coding (LSSC) [15], clustering-based sparse representation (CSR) [17]

and so on. However, most of these methods only consider the Gaussian noise removal and they may not
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work well for mixed noise.

There are two common types of impulse noise: salt-and-pepper noise and random-valued noise. For

impulse noise removal, the most popular and classical method is median type filters (e.g. [18], [19]).

Different from the mean filters for Gaussian noise removal, the outputs of median filters take the median

value in each pixel neighborhood and the impulse noise can be efficiently identified and eliminated,

especially for salt-and-pepper noise. However, the median type of filters may significantly destroy the

structures of the images, such as blurring of edges and textures. In a variational setting, the data fidelity

term associated with median filters is L1 norm, see [20], [21]. This model has also been extended to

deblurring problems in [22]–[25]. For images with mixed noise, these noise detectors have been combined

with sparsity regularization method to deal with Gaussian plus impulse noise, see [26]. With the sparsity

representation, the quality of the restored image is improved since texture parts can be represented through

the dictionary. However, It is worthwhile to note that methods similar to those in [21], [24]–[26] may

not work for mixed Gaussian noise.

A natural choice for mixed noise removing is to consider the combination of L1, L2 fidelities. For

example, we can use L2 + L1+TV model to remove the Gaussian plus impulse mixed noise. However,

it is not easy to precisely determine which pixel is contaminated by Gaussian noise and which one

is contaminated by other noise. To overcome this difficulty, in [27], a kernel estimation method was

introduced to remove Gaussian and random-valued noise. The TV regularization and EM algorithm was

used in [28].

In this work, we propose a general framework to adaptively detect and remove noise of different type,

including Gaussian noise, impulse noise and more importantly, their mixtures. We derive our model from

the regularized maximum likelihood estimation (MLE) of the noise. Since the likelihood functional related

to mixed noise is not easy to be optimized compared with the functional for a single Gaussian noise, a

new functional with an additional variable is introduced. This new functional is easier to be optimized and

has the same global minimizer (or maximizer) as the original likelihood functional. By minimizing the

new functional, we obtain some weighted norms models, in which the weighting functions play the role

of noise detectors. By integrating this with sparsity representation, our model can well restore images and

textures corrupted by mixed noise. To solve the weighted rank-one approximation problem arisen from

the proposed model, a new iterative scheme is given and the low rank approximation can be obtained

by singular value decomposition (SVD). Our method integrates sparse coding-dictionary learning, image

reconstruction, noise clustering (detection), and parameters estimation into a four-step algorithm. Each

step needs to solve a minimization problem.
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The rest of the paper is organized as follows. In section II, the K-SVD denoising algorithm is briefly

reviewed. The proposed methods are given in section III. Details on theoretical aspects of the model, the

proposed algorithms and choices for initial values are discussed. Section IV contains the experimental

results. The proposed method is compared with a a number of existing models from the literature. Finally,

we conclude our method in section V.

II. BRIEF REVIEW OF THE K-SVD DENOISING ALGORITHM

The K-SVD method for removing additive homogeneous white Gaussian noise is proposed in Aharon

and Elad [11]–[13]. Since our algorithm will be built upon sparse representations, we now brief review

the main mathematical ideas of the K-SVD denoising algorithm. Let g, f ∈ RN1×N2 be the N1×N2 size

noisy and clean images, respectively. To simplify notations, we always use the lowercase letters such

as g ∈ RN1N2 to represent a column vector by stacking the columns of the matrix g. According to the

maximum a-posteriori probability (MAP) estimator and an assumption that each small image patch can

be sparsely represented as a linear combination of a redundant learned dictionary, the authors of [11],

[12] presented the following energy minimization problem to address the denoising problem:

{α∗�,i,D∗, f∗} = arg min
D,α�,i,f

{
J (α,D, f) ,

1
2
||g − f ||22 +

λ

2

N∑
i=1

||Dα�,i −Rif ||22 +
N∑
i=1

µi||α�,i||0

}
(2)

In the above, each Ri ∈ Rn1n2×N1N2 is a binary extracting matrix which extracts n1n2 components

from a column vector of size N1N2, that is to say, Rif stands for extracting a n1 × n2 patch from

the image f at coordinates (i, j) as a n1n2 dimensional column vector. D ∈ Rn1n2×K is an unknown

redundant dictionary (i.e. K > n1n2) which should be learned from the noisy image. Each column of

the dictionary D, denoting by dk (k = 1, 2, · · · ,K), is called an atom, and usually satisfies ||dk||2 = 1

though this is not crucial. The vectors α�,i ∈ RK refer to the linear combination coefficients of these

atoms, and the l0 pseudo norm is defined by

||α�,i||0 , #{k : αki 6= 0, 1 6 k 6 K}, (3)

where # is the cardinality of a set. The l0 pseudo norm is a sparsity measure, which counts the number

of non-zero elements in a vector. µi > 0 are some regularization parameters that control the image patch

sparsity. λ is a weight parameter controls the trade-off between the data fidelity and the image prior.

The K-SVD denoising algorithm in [11], [12] is a relaxed alternating minimization method. The

problem (2) can be split into three subproblems:
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Sparse Coding:

αν+1 = arg min
α
J (α,Dν , fν). (4)

This l0 minimization problem is in general NP-hard. However, it can be approximately solved by the

basis pursuit algorithms [29] such as the orthonormal matching pursuit (OMP) [30], [31]. Other recently

proposed methods can also be employed such as the algorithms in [32]–[34].

Dictionary Learning:

Dν+1 = arg min
D,||dk||2=1

J (αν+1,D, fν). (5)

Instead of directly solving this constrained quadratic optimization, the K-SVD algorithm is to iteratively

update a column of D by solving a rank-one approximation of (5). More details about the K-SVD

algorithm, please see [13].

Reconstruction:

fν+1 = arg min
f
J (αν+1,Dν+1, f). (6)

This subproblem has a closed-form solution

fν+1 = (I + λ

N∑
i=1

RT
i Ri)−1(g + λ

N∑
i=1

RT
i Dαν+1

�,i ). (7)

As mentioned earlier, the K-SVD denoising algorithm in [11], [12] is built on the assumption that

the noise is Gaussian. It may not work well for mixed noise. Moreover, the performance of this model

depends on the choice of the parameters which related to the noise variance. In [11], [12], the noise

variance are supposed to be known. In the next, we shall propose a general framework to remove mixed

noise with sparse representations.

III. THE PROPOSED METHOD

A. The Probability Density Functions of Mixed Noise

We focus on additive mixed noise removal via energy minimization method. For real images, the

probability density function (PDF) is often not a single standardized distribution such as Gaussian. Thus

its MLE is often difficult to solve. Here we consider the case that the noise is sampled from several

different distributions. This mixed noise in images is more difficult to remove than the standardized

Gaussian noise. In this paper, we address this issue and give a general framework for restoring images

corrupted by mixed noise.
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Suppose the mixed noise n ∈ RN1N2 is constituted by M different groups nl, l = 1, 2, · · · ,M , each

nl is some realizations of a random variable Nl with PDF pl(x), and the ratio of each n1 is rl. Here

rl satisfies
∑M

l=1 rl = 1. Similarly, n can also be regarded as some realizations of a random variable N

whose PDF is p(x). With these assumptions, one can get the PDF of mixed noise

p(x) =
M∑
l=1

rlpl(x). (8)

In this paper, we suppose all values of the pixels in the original and observed images range from

[0, 255]. A special mixed noise is the Gaussian noise plus impulse noise. For such noise model, it can

be written as

n =

 n1, with probability 1− r,

n2, with probability r,
(9)

where n1 is the Gaussian noise and n2 is the changed pixels values by the impulsive process. Thus n2

is a uniformly distributed random number in intensity range [0, 255] for random-valued noise and has

a value at either 0 or 255 for the salt-and-pepper noise. In real scenario, the noise model maybe more

complicated than (9), here (9) is a theoretical formulation with some mathematical simplifications. It can

be proven that

Proposition 1: the PDFs of Gaussian plus random-valued noise and Gaussian plus salt-and-pepper

noise have the following expression respectively,

p(x) =

 (1− r)p1(x) + r
255

∫ 255−x
−x p2(y) dy,

(1− r)p1(x) + r
2p2(−x) + r

2p2(255− x),
(10)

where p1 is a Gaussian function and p2 is the PDF of the clean image f , which is a compactly supported

function with support [0, 255], i.e. p2(y) = 0 when y 6∈ [0, 255].

Proof: The proof is similar to the one given in appendix A in [35]. For brevity, we omit it here.

For another special mixed noise, namely impulse noise, its PDF has been analyzed in [27], [35] etc.,

and the mixture model p(x) in (8) is a general formulation since it can represent any mixed noise such

as Gaussian-Gaussian, Gaussian-impulse, Gaussian-Poisson and so on.

Once the PDF of noise is known, a natural way to construct the fidelity term for image denoising

is MLE. However, a direct use of the MLE method would lead to a log-likelihood functional which is

difficult to be optimized in the case of mixed noise. For instance, by the independent assumption and

mixture model (8), one can get the log-likelihood functional

L(f,Θ) = ln
N∏
i=1

M∑
l=1

rlpl(gi − fi) =
N∑
i=1

ln
M∑
l=1

rlpl(gi − fi), (11)
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where N = N1N2 is the total number of the pixels, and Θ is a parameter vector of the distributions.

Here L is not easy to be efficiently maximized since the the existing of ln-sum operator. For Gaussian

mixture (i.e. each pl is a Gaussian function), a classical approach to solve this optimization problem is

the well-known expectation-maximization (EM) algorithm [35], [36]. Here we give another method to

address this problem for the MLE of general mixture model. This method is intuitive and built upon

continuous constraint optimization. We shall use it to design the denosing cost functional.

B. Optimizing the Log-likelihood Functional Indirectly

We found that the essential difficulty of optimizing L comes from the ln-sum function since the

logarithm and the summation operations are noncommutative in general. However, the commutativity of

logarithm and summation operations can be achieved under certain conditions. Based on [37]–[39], we

have the following more general property on the commutativity of log-sum operations

Proposition 2 (Commutativity of log-sum operations): Given two functions γl(x) > 0, pl(x) > 0, we

have

− ln
M∑
l=1

γl(x)pl(x) = min
u(x)∈∆+

{
−

M∑
l=1

ln[γl(x)pl(x)]ul(x) +
M∑
l=1

ul(x) lnul(x)

}
, (12)

where u(x) = (u1(x), u2(x), · · · , uM (x)) is a vector-valued function, and ∆+ = {u(x) : 0 < ul(x) <

1, and
∑M

l=1 ul(x) = 1}.

Proof: The proof can be done using Lagrangian multiplier method.

This proposition is very useful in simplifying the optimization problem of L. More precisely, after

changing the order of log and sum operators, one obtains a new functional with more variables but which

can be efficiently minimized (e.g. quadratic problem).

We now show the details on how to apply this proposition. Considering the following minimizing

problem
min
f,Θ
{−L(f,Θ)} = min

f,Θ

{
−
∑N

i=1 ln
∑M

l=1 rlpl(gi − fi)
}

= min
f,Θ,u∈∆+

{
−
∑N

i=1

∑M
l=1 ln[rlpl(gi − fi)]uil +

∑N
i=1

∑M
l=1 uil lnuil

}
.

(13)

Here gi, fi, and uil are the discrete representation of g(x), f(x), and ul(x), respectively. u is a matrix

whose (i, l)-th element is uil and u ∈ ∆+ means that each row of u (i.e. ui,�) in ∆+.

Let us introduce a new functional

H(f,Θ,u) , −
N∑
i=1

M∑
l=1

ln[rlpl(gi − fi)]uil +
N∑
i=1

M∑
l=1

uil lnuil. (14)
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Compared with the original log-likelihood functional L(f,Θ), there is an extra variable u in H. However,

minimizing H is easier than L in most of the cases. For example, taking each pl as Gaussian function,

then H becomes quadratic with respect to f , and Θ has a closed-form solution.

Instead of optimizing the original MLE problem, we can turn to minimize H. Usually, the minimizer

of multi-variables functional H can be obtained by the alternating algorithm:
uν+1 = arg min

u∈∆+

H(fν ,Θν ,u),

(fν ,Θν+1) = arg min
f,Θ

H(f,Θ,uν+1).
(15)

For the above iterative scheme, we have:

Proposition 3 (Energy Descent): The sequence (fν ,Θν) produced by iteration scheme (15) satisfies

−L(fν+1,Θν+1) 6 −L(fν ,Θν). (16)

Proof: See appendix A for details.

The equation in (13) shows that both H and −L have the same minimum. However, our interest is to

know whether they have the same minimizer (not the minimum value). For this aspect, we have:

Proposition 4: Both H and −L have the same global minimizer (f∗,Θ∗).

Proof: See appendix B.

The proposition 3 can ensure that the iterative scheme (15) can at least find a local minimizer of −L.

Moreover, once we obtain the global minimizer of H by iteration (15), we know it also gives the global

minimizer of −L thanks to proposition 4.

Let us mention that the iteration (15) is essentially equivalent to the EM algorithm [35], [36], [40]:

Updating u in the first step plays a role of the E-step in the EM algorithm and the second step is the

M-step. Indeed, uil is a probability of noise at location i belongs to the l-th distribution. However, here

the theoretical foundation is totally different from the probabilistic EM algorithm. In this paper, we show

that EM algorithm is just a special alternating algorithm with some constraint conditions.

Next, we shall construct a model for mixed noise removing based on H and sparse representation.

C. Weighted Norms Model

In section III-B, we have shown that the MLE problem (i.e. to maximize L) of mixed noise can be

realized by minimizing a new functional H. By incorporating the patch-based sparsity, we propose the

October 24, 2012 DRAFT



9

following denoising cost functional

J (α,D,u,Θ, f) =

−
N∑
i=1

M∑
l=1

uil ln (rlpl(gi − fi)) +
N∑
i=1

M∑
l=1

uil lnuil

−λ
N∑
i=1

n1n2∑
j=1

M∑
l=1

[Riu�,l]j ln (rlpl([Dα�,i]j − [Rif ]j))

+λ
N∑
i=1

n1n2∑
j=1

M∑
l=1

[Riu�,l]j ln[Riu�,l]j +
N∑
i=1

µi||α�,i||0.

(17)

In this formulation, the first and second terms are H (14), which is a global data-fitting term related

to the MLE of the mixed noise; the third and fourth terms measure the difference between each n1×n2

image patch and the approximation with an over-complete dictionary D; here the measurement is also

constructed in term of H; the last term demands the representation is sparse; λ > 0 and µi > 0 are

parameters that control the trade-off between the different terms.

Equation (17) is a general functional for denoising mixed noise. For particular mixture such as

Gaussian-Possion, we only need to replace the PDF pl with the relevant expression. In this paper, we

only consider the case that each pl is a Gaussian function parameterized by variance σ2
l , that is to say

pl(x) =
1√

2πσ2
l

exp(− x2

2σ2
l

). (18)

The Gaussian-Gaussian mixture model would lead to a weighted l2 norm which can be easily optimized.

Taking (18) into (17), and ignoring any constant term, one can get

J (α,D, f,u,Θ) =
1
2 ||w ◦ (g − f)||22 + λ

2

∑N
i=1 ||Riw ◦ (Dα�,i −Rif)||22

+1
2 < u,1 > (lnσ2

l − 2 ln rl) + λ
2

∑N
i=1 < Riu,1 > (lnσ2

l − 2 ln rl)

+ < u, ln u > +λ
∑N

i=1 < Riu, ln(Riu) > +
∑N

i=1 µi||α�,i||0,

(19)

where w ∈ RN and its elements wi =
√∑M

l=1
uil
σ2
l

, the symbol ◦ stands for element-wise multipli-

cation between two vectors, while u ∈ RN×M and <,> is the Frobenius inner product, and Θ =

(σ2
1, · · · , σ2

M , r1, · · · , rM ) represents some statistic parameters of the noise.

D. Algorithms

We apply the relaxed alternating algorithm to iteratively minimize (19). In each iteration, one or two

variables are updated by fixing the others. More precisely, we need to solve the following four sub-

minimization problems.
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i. Sparse Coding and Dictionary Learning:

The first minimization problem is

(αν+1,Dν+1) = arg min
α,D

J (α,D, fν ,uν ,Θν). (20)

Applying the alternating algorithm again to this subproblem, this problem can be split into two convex

subproblems corresponding to the so-called sparse coding step and the dictionary learning step, respec-

tively. Let ν1 be an inner iteration number, then αν+1 and Dν+1 can be obtained by solving the following

two minimization problems iteratively:

Sparse Coding: (Conjugated OMP)

αν1+1 = arg min
α
J (α,Dν1 , fν ,uν ,Θν) =

arg min
α

{
λ
2

∑N
i=1 ||WiDν1α�,i −WiRif

ν ||22 +
∑N

i=1 µi||α�,i||0
}
.

(21)

In the above, Wi is a diagonal matrix whose diagonal elements are Riw, i.e. Wi = diag(Riw). This

l0-minimization problem can be approximately solved with the OMP algorithm [30], [31] by redefining

D , WiD and Rifν , WiRif
ν . This process is related to a conjugated orthonormal matching pursuit,

and its convergence can be proven similarly as in [30], [31].

Dictionary Learning: (Modified K-SVD)

Dν1+1 = arg min
D,||dk||2=1

J (αν1+1,D, fν ,uν ,Θν)

= arg min
D,||dk||2=1

{∑N
i=1 ||Riw ◦ (Dαν1+1

�,i −Rif
ν)||22

}
.

(22)

Although (22) is very similar to (5) except for a weight Riw, we should note that the above problem

can not be directly solved by the K-SVD algorithm since the linear structure is significantly changed by

the non-uniform weights. We denote

W =
(

R1w · · · RNw
)
,X =

(
R1f · · · RNf

)
, (23)

then (22) becomes

Dν1+1 = arg min
D,||dk||2=1

{
||W ◦ (Dαν1+1 −Xν)||2F

}
. (24)

Similar to the K-SVD learning algorithm of [13], a natural approach is to minimize each atom dk from

following energy:

dν1+1
k = arg min

||dk||2=1
||W ◦ (Ek − dkαν1+1

k,� )||2F . (25)
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In the above, the error Ek , Xν −
∑K

l=1,l 6=k d
ν1
l α

ν1+1
l,� . This problem is known as a weighted rank-one

approximation. It is not simple and has no closed-form solution [41]. Srebro and Jaakkola [41] proposed

an iterative algorithm to address this difficulty. Their method is to solve

dν1+1
k = arg min

||dk||2=1
||W ◦ (Ek − dν1k α

ν1+1
k,� ) + dν1k α

ν1+1
k,� − dkαk,�||2F , (26)

via SVD. We note that this algorithm can not be used for the unweighted case when W = τI is a scalar

matrix. Here we shall use another new iteration. Recall that the key idea of K-SVD algorithm is the

Gauss-Seidel iteration for matrix equations and low-rank approximations, thus the key step is to separate

the diagonal element dk from the expression. Note that there are N terms Widkα
ν1+1
k,� in (22), and we

can not get a nice linear representation for dk since each weight Wi may be different. However, we can

get an approximated one via the following minimization problem

τ∗ = arg min
τ

N∑
i=1

||Widkα
ν1+1
k,� − τdkαν1+1

k,� ||
2
F , (27)

where τ is a scalar variable. It is easy to see that τ∗ = dT
k

(∑N
i=1Wi

N

)
dk. Hence, we solve the minimization

problem

dν1+1
k = arg min

||dk||2=1
||W ◦ (Ek − dν1k α

ν1+1
k,� ) + τkd

ν1
k α

ν1+1
k,� − τkdkαk,�||2F (28)

to update the atoms, where τk = (dν1k )T
(∑N

i=1Wi

N

)
dν1k . Let us mention that the modified scheme would

reduce to the original K-SVD algorithm when all weights Wi = τI are the same.

Incorporating the sparse constraint, we get our modified K-SVD algorithm for weighted norm model

as follows:

• Select the index set of patches Sk that use atom dk, i.e. Sk = {i : αν1+1
k,i 6= 0, 1 6 i 6 N}.

• Let τk = (dν1k )T
(∑N

i=1Wi

N

)
dν1k , for each image patch with index i ∈ Sk, calculate the residual

ẽki = Wi(Rif
ν −Dν1αν1+1

�,i ) + τkd
ν1
k α

ν1+1
k,i .

• Set Ẽk ∈ Rn1n2×|Sk| with its columns being the ẽki and update dν1+1
k by minimizing

(dν1+1
k , β∗) = arg min

||dk||2=1,β
||Ẽk − τkdkβT||2F , (29)

where β ∈ R|Sk|. This rank-one approximation can be solved using SVD decomposition of Ẽk.

• Replace αν1+1
k,i , i ∈ Sk by the relevant element of β∗.

In our experiments, we choose the inner iteration number ν1 = 10.

ii. Reconstruction:
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The minimization problem we need to solve is:

fν+1 = arg min
f
J (αν+1,Dν+1, f,uν ,Θν)

= arg min
f

{
1
2 ||w ◦ (g − f)||22 + λ

2

∑N
i=1 ||Riw ◦ (Dν+1αν+1

�,i −Rif)||22
}
.

(30)

Since J is quadratic with respect to f , thus

fν+1 =
(

diag(w ◦ w) + λ
∑N

i=1 RT
i diag((Riw) ◦ (Riw))Ri

)−1(
diag(w ◦ w)g + λ

(∑N
i=1 RT

i diag((Riw) ◦ (Riw))Ri

)
Dν+1αν+1

�,i

)
.

(31)

Note that every Ri is a diagonal matrix. Thus the inverse matrix in the above equation can be directly

obtained.

iii. Noise Clustering: (Expectation step)

The minimization problem we need to solve is

uν+1 = arg min
u∈∆+

J (αν+1,Dν+1, fν+1,u,Θν)

= arg min
u∈∆+


1
2 ||w ◦ (g − fν+1)||22 + λ

2

∑N
i=1 ||Riw ◦ (Dν+1αν+1

�,i −Rif
ν+1)||22

+1
2 < u,1 > (ln(σ2

l )
ν − 2 ln rνl ) + λ

∑N
i=1 < Riu, ln(Riu) >

+ < u, ln u > +λ
2

∑N
i=1 < Riu,1 > (ln(σ2

l )
ν − 2 ln rνl )

 .
(32)

This problem has a closed-form solution. For simplicity of notations, let us denote

M ,
∑N

i=1 RT
i Ri,

Tl ,
(g−fν+1)◦(g−fν+1)+λ

∑N
i=1(RT

i (Dν+1αν+1
�,i −Rifν+1))◦(RT

i (Dν+1αν+1
�,i −Rifν+1))

2σ2
l (1+λM1) ,

(33)

where the division symbol means element-wise division between two vectors. Then uν+1 can be computed

by

uν+1
�,l =

rνl
σνl

exp(−Tl)∑M
s=1

rνs
σνs

exp(−Ts)
. (34)

iv. Parameters Estimation:

The minimization for this step is

Θν+1 = arg min
Θ,

∑
rl=1
J (αν+1,Dν+1, fν+1,uν+1,Θ)

= arg min
Θ,

∑
rl=1


1
2 ||w ◦ (g − fν+1)||22 + λ

2

∑N
i=1 ||Riw ◦ (Dν+1αν+1

�,i −Rif
ν+1)||22

+1
2 < uν+1,1 > (ln(σ2

l )− 2 ln rl)

+λ
2

∑N
i=1 < Riuν+1,1 > (ln(σ2

l )− 2 ln rl)

 .
(35)

From equation ∂J
∂Θ = 0, we get the closed-form solution of Θν+1:

rν+1
l = <uν+1

�,l ,1>+λ<Muν+1
�,l ,1>

<1,1>+λ<M1,1> ,

(σ2
l )
ν+1 = <uν+1

�,l ,(g−fν+1)◦(g−fν+1)>+λ
∑N
i=1<Riu

ν+1
�,l ,(Dν+1αν+1

�,i −Rifν+1)◦(Dν+1αν+1
�,i −Rifν+1)>

<uν+1
�,l ,1>+λ

∑N
i=1<Riu

ν+1
�,l ,Ri1>

.
(36)
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E. Tuning of Initial Values and Parameters

It is well-known that the alternating algorithm may immerse at a local minimum. In addition, the quality

of the restorations is partly influenced by the choice of control parameters such as λ in the model. Thus

good initial values and parameters can help us to improve the performance of the algorithm. In this

section, we first discuss the choice of initial variance of noise (σ2
l )

0. Tuning of the other optimization

initial values and parameters would be discussed later.

Let us begin with the following variance properties of Gaussian mixture distribution:

Proposition 5: Suppose N is a random variable with Gaussian mixture PDF p(x), i.e.

p(x) =
M∑
l=1

rl√
2πσ2

l

exp(− x2

2σ2
l

), (37)

then its variance E(N− E(N))2 =
∑M

l=1 rlσ
2
l .

Proof: The proof can be done through direct calculations using the definition of variance.

Proposition 6: Suppose N1 and N2 are two independent identically distributed random variables with

the same 2-components Gaussian mixture PDF p(x), i.e.

p(x) =
2∑
l=1

rl√
2πσ2

l

exp(− x2

2σ2
l

). (38)

Let N = ρN1 + ρN2, where ρ is a constant, then we have the variance of N

E(N− E(N))2 = ρ2
2∑
i=0

Ci2r
2−i
1 ri2

(
(2− i)σ2

1 + iσ2
2

)
. (39)

In general, if N = ρ
∑K

κ=1 Nκ and each Nκ satisfies the independent conditions, then we have

E(N− E(N))2 = ρ2
K∑
i=0

CiKr
K−i
1 ri2

(
(K − i)σ2

1 + iσ2
2

)
. (40)

Proof: For the length limit of the paper, the proof is omitted here and we leave it to the readers.

Corollary 1: Let N = N1 + N2 + N3 + N4− 4N5, where each Nk, k = 1, · · · , 5 are independent and

identically distributed with 2-components Gaussian mixture PDF, then

E(N− E(N))2 =
∑4

i=0C
i
4r

5−i
1 ri2

(
(20− i)σ2

1 + iσ2
2

)
+
∑4

i=0C
i
4r

4−i
1 ri+1

2

(
(4− i)σ2

1 + (i+ 16)σ2
2

)
.

(41)

In particular, if r1 = r2 = 0.5, then

E(N− E(N))2 = 10(σ2
1 + σ2

2). (42)
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Now, we present a rough variance estimation for 2-components mixed Gaussian noise using corollary

1. Denote the Laplace operator of the observed image by

4gij = gi+1,j + gi−1,j + gi,j+1 + gi,j−1 − 4gi,j . (43)

According to the noise model, one gets 4gij −4fij = 4nij , which results in

σ2
1 + σ2

2 =
Var(4g −4f)

10
(44)

by the corollary 1. Here ’Var’ represents the sample variance. We simply replace the left side of the

above equation by Var(4g) since f is unknown. That is to say, we take

σ2 ≈
∑N1

i=1

∑N2
j=14gij

10N1N2
(45)

to roughly estimate the sum of variances of the mixed noise. Generally speaking, Var(4f) is greater

than 0 due to existence of edges and textures in the true image f , this implies that the estimated variance

σ2 is always larger than the true one σ2
1 + σ2

2 . This rough estimation provides a good enough initial

parameter for our model to get some satisfactory reconstructions.

In order to get the initial (σ2
2)0 and (σ2

1)0, we empirically set (σ2
2)0 = 2(σ2

1)0. Thus we get the initial

parameter as  r0
1 = 0.5,

r0
2 = 0.5,

,

 (σ2
1)0 = σ2

3 ,

(σ2
2)0 = 2σ2

3 .
(46)

Other initial values are selected as: D0 is set to the overcomplete DCT dictionary; f0 = g, and

u0
�,1 = 0, u0

�,2 = 1.

According to the proposition 5 and [11], [12], the parameter λ in our model is empirically set as

λ = 1
30

√∑2
l=1 r

ν
l (σ2

l )
ν in the ν-th outer iteration, and for each example Rif , the conjugated OMP

algorithm in (21) is terminated when ||Riw◦(Rif−Dα�,i)||22
n1n2

< 1.152. Indeed, this is an implicit method to

select the sparse regularization parameter µi. Here n1×n2 is the size for the extracted image patch Rif ,

and in our experiments, n1 × n2 is set as a 8× 8 block.

IV. EXPERIMENTAL RESULTS

Let us first give some details of the implementation of the proposed algorithm. Firstly, we do not

update Rif
ν during the iterations, that is to say, we keep Rif

ν or Rif
ν+1 as Rif

0 = Rig in our

algorithm. It implies that we use the noisy image g to train the dictionary D. The reason for doing so

is that the error limit in the OMP should be smaller since the residual error ||Riw ◦ (Dα�,i −Rif
ν)||22

would contain less noise as the iterative process progresses if we update fν . However, this error limit is
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(a) Lena (b) Barbara (c) Boat (d) House (e) Peppers

Fig. 1. The original test images.

related to the true image f and it is an unknown. This leads to the fact that the stopping criterion of the

OMP algorithm is difficult to be chosen. Thus we keep Rif
ν as Rig and the main residual error to be

the noise variance in this case. Secondly, in this paper, the total number of the outer iteration number ν

is set to 20 if not stated otherwise.

Fig. 1 shows five test images for our experiments: Lena(512× 512), Barbara(512× 512), Boat (512×

512), House (256×256), and Peppers (256×256). In order to compare with other methods, the PSNR =

10 log10
2552

Var(f∗−f) is used to measure the improvement of image quality. Here f∗ and f are the restored

image and clean image, respectively.

A. Gaussian Mixture Noise

In this experiment, the original image ’Barbara’ is contaminated by two Gaussian noise with different

standard deviations σ1 = 10 and σ2 = 50, respectively, while the mixture ratio is r1 : r2 = 0.7 : 0.3.

We implement the proposed algorithm two times with two different noise priors. In case 1, all the noise

information, including the true standard deviations (σ1, σ2), mixture ratio (r1, r2) and spatial distribution

(u1, u2), are supposed to be known. For such a case, we set the outer iteration number ν = 1 in our

algorithm and use the true noise parameters for the initialization. In case 2, none priors of noise is given

and all the parameters need to be estimated from the noisy image. The denoising results for both cases

are shown in Fig.2. As can be seen from the figure, it is understandable that the reconstructed image

in case 1 has better visual effect (preserving textures better) and higher PSNR value than the denoising

result in case 2. This is because the estimated noise parameters are often less accurate than the given true

ones. To illustrate the superiority of our model, we take the original K-SVD [12] for comparison though

it is designed for a single Gaussian distribution. According to proposition 5, for 2-components Gaussian

mixture noise, the denoising image would have the highest PSNR value when the noise variances are set

as r1σ
2
1 + r2σ

2
2 in K-SVD algorithm. In all the experiments, the parameter of noise variances in K-SVD
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(a) Noisy

(PSNR=19.02)

(b) Ours (case 1, with

known parameters,

PSNR=32.39)

(c) Ours (case 2, with

unknown parameters,

PSNR=30.07)

(d) K-SVD [12] (with

known parameters,

PSNR=26.95)

Fig. 2. A comparison of denoising results under Gaussian mixture noise. For better visual effects, only part of “barbara” image

and its corresponding reconstructions are displayed.

(a) u ◦ g (b) (1− u) ◦ g (c) Learned D (Case 1) (d) Learned D (Case 2) (e) Learned D (K-SVD)

Fig. 3. Some estimated variables with the proposed algorithm. From left to right: the estimated images u ◦ g and (1− u) ◦ g

of our method; the learned dictionaries D by the proposed algorithm and K-SVD [12], respectively.

algorithm [12] are supposed to be known as r1σ
2
1 +r2σ

2
2 . The denoised image with K-SVD are displayed

in Fig.2(d). One can see that there are some speckles in the restored image since this model can not

discriminate the pixels with different noise levels. In this experiment, our method improves the PSNR

values of the reconstructions more than 3 db. For case 2, some estimated functions and parameters by

our algorithm are shown in Fig.3 and TABLE I. In Fig.3, one can see that the learned dictionaries by the

proposed method are less noisy and can better describe the character of “Barbara” than the K-SVD’s.

This is one of the reasons why our model can produce better denoising results than K-SVD under mixed

noise.

Let us mention that the first iteration in the proposed algorithm is exactly the K-SVD denoising

method in [12] with some initially estimated parameters. Our algorithm can improve the quality of

the reconstructions with the help of the estimated noise parameters. Figure Fig.4 illustrates parts of

the denoising images during the iterations. As can be seen from this figure, the result f1 is a little

oversmoothed mainly because the initially estimated sum of the variances of noise is always larger than
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(a) initial f0 (b) intermediate f1 (c) intermediate f5 (d) final f20

(e) σ1 = 5, σ2 = 30, r1 : r2 = 0.3 :

0.7

(f) σ1 = 10, σ2 = 50, r1 : r2 = 0.7 :

0.3

(g) σ1 = 15, σ2 = 75, r1 : r2 = 0.5 :

0.5

Fig. 4. First row: the denoising results fν of our algorithm. Second row: the PSNR values for the five test images versus the

iteration number. X-axis: the iteration number, Y-axis: the PSNR values.

the true one. However, our algorithm can iteratively improve the parameters of noise and it can provide

nicer results, just as shown in Fig.4(c)-4(d). To detail this development, figures in the second row of

Fig.4 illustrate the improved PSNR values versus the iteration for the five test images under different

levels noise.

More denoising results obtained by the K-SVD and ours under different levels of Gaussian mixture

noise are given in TABLE I. For the PSNR values obtained by the proposed algorithm, all the noise

parameters are unknown and need to be estimated from the given noisy images. As for the K-SVD

algorithm in [12], the noise variances are all supposed to be known as r1σ
2
1 + r2σ

2
2 . It can be seen from

this table that the proposed model still has better performance though our method is blind (all the noise

parameters need to be estimated).

B. Impulse Noise

Salt-and-pepper noise and random-valued noise are two common types of the impulse noise. Strictly

speaking, they are not additive noise. Existing methods to remove the impulse noise include median type

filters such as [18], [19], l1-norm based variational method [20]–[22], [24], [25], in which two-phase
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Images σ1 = 5 σ2 = 30 σ1 = 10 σ2 = 50 σ1 = 15 σ2 = 75

↓ r1 : r2 → 0.3:0.7 0.5:0.5 0.7:0.3 0.3:0.7 0.5:0.5 0.7:0.3 0.3:0.7 0.5:0.5 0.7:0.3

Lena K-SVD 31.11 31.60 31.30 28.49 28.92 28.43 26.41 26.79 26.05

Proposed 31.43 32.69 34.24 29.00 30.43 32.07 27.04 28.57 30.36

Barbara K-SVD 29.37 30.08 30.65 26.40 27.08 26.95 23.70 24.38 24.21

Proposed 29.19 30.50 32.69 26.46 28.15 30.07 23.75 26.20 28.22

Boat K-SVD 29.08 29.63 29.78 26.60 27.07 26.81 24.61 25.02 24.60

Proposed 28.96 29.85 31.19 26.79 27.82 29.19 25.02 26.31 27.77

House K-SVD 31.81 32.25 31.74 28.83 29.42 28.88 26.13 26.74 26.13

Proposed 32.73 33.66 34.83 30.16 31.56 33.10 27.24 29.44 31.42

Peppers K-SVD 29.47 30.10 30.32 26.82 27.40 27.10 24.53 25.16 24.69

Proposed 29.66 30.55 31.69 27.37 28.47 29.79 25.21 26.76 28.37

TABLE I

THE PSNR VALUES OF THE DENOISED IMAGES WITH THE PROPOSED METHOD AND K-SVD [12] IN THE PRESENCE OF

GAUSSIAN MIXTURE NOISE.

methods [21], [24], [25] can provide reasonably good results. Here we shall illustrate that the proposed

model can work well for impulse noise and produce better denoising results than these mentioned methods.

The true PDFs of the impulse noise have been analyzed in our previous work [35] and it has been shown

that the PDFs can be well approximated with mixture models.

As for impulse noise, the initial u0 in our algorithm can be better chosen as the output from the first

phase in the two-phase methods [24], [25], that is, u0 can be set as

u0
i =

 1, if gi == fmed
i ,

0, else.
(47)

In the above expression, fmed is a filtered image by median-type filter. Similar to [24], [25] we can

use adaptive median filter (AMF) [18] and adaptive center-weighted median filter (ACWMF) [42] for

salt-and-pepper noise and random-valued impulse noise detection, respectively. Besides, in order to get

to the converged solution quickly, here for impulse noise, we set the initial variances as (σ2
1)0 = σ2

10 ,

(σ2
2)0 = 9σ2

10 ,
(48)

where σ2 is the estimated variance from the noisy images according to equation (45). This choice of

initial variances is empirical and maybe not be optimal. Our goal is to increase the difference of the

initial variances since the true one is σ2
1 = 0.
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Images Noise density r Noisy [42] [25] Proposed

0.1 19.27 37.91 38.22 38.38

Lena 0.2 15.42 34.95 35.45 36.51

0.3 13.32 32.73 33.49 34.42

0.4 11.99 30.24 31.37 31.75

0.5 11.62 27.49 28.79 29.47

0.6 10.82 23.86 25.33 25.55

0.1 18.83 26.25 25.98 35.41

Barbara 0.2 15.83 25.36 25.20 33.58

0.3 14.07 24.50 24.47 31.14

0.4 12.81 23.54 23.76 26.60

0.5 11.85 22.37 22.86 23.40

0.6 11.06 20.49 21.31 21.68

0.1 19.35 37.06 37.46 40.88

House 0.2 16.28 34.22 35.06 37.97

0.3 14.52 31.55 32.45 34.36

0.4 13.27 29.27 30.28 30.70

0.5 12.28 26.85 27.96 28.23

0.6 11.51 23.61 24.84 25.67

TABLE II

PSNR VALUES FOR DIFFERENT METHODS AND TEST IMAGES WITH RANDOM VALUED NOISE.

Since salt-and-pepper noise can be well detected by median filters and thus two-phase method can

give some good denoising results even though the salt-and-pepper noise density is as high as 90% [24],

[25]. However, random-valued noise is hard to identify and there is no good detector for it. Compared to

two-phase method, our method has a superiority that the noise estimation and denoising process are done

alternately, which means one of the two procedures can guide the other using the estimated information.

This explains why the proposed method has better performance for random-valued noise, especially when

the noise levels are high.

TABLE II lists some denoising results in the presence of random-valued noise. In this table, the

density of random-valued noise varies from 0.1 to 0.6. As can be seen from this table, our method gives

the best restoration with the highest PSNR values with all different noise density. Because of the sparsity

regularization of small blocks, our method significantly improves the texture preservation, see Barbara

test image in Fig.5 for more details.
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(a) Noisy,r = 0.3 (b) ACWMF(31.55) (c) Two-phase(32.45) (d) Proposed(34.36) (e) Learned D for House

(f) Noisy,r = 0.2 (g) ACWMF(25.36) (h) Two-phase(25.20) (i) Proposed(33.58) (j) Learned D for Bar-

bara

Fig. 5. The denoising results of different methods under random-valued noise.

C. Gaussian Noise Plus Impulse Noise

We consider Gaussian plus impulse mixed noise removal in this subsection. Recall that the PDF of

Gaussian plus impulse noise has the expression (9). Specially, if we suppose the normalized histogram

of the clean image, namely p2(y), is an uniformly distributed PDF in [0, 255], then for random-valued

noise, (9) becomes

p(x) = (1− r)p1(x) +


r(255+x)

2552 , −255 6 x 6 0,
r(255−x)

2552 , 0 6 x 6 255,

0, else.

(49)

The above triangular-type PDF is the key point of the kernel regression method in [27] for addressing

mixture of Gaussian and random-valued noise. One can use this PDF and the framework proposed in

this paper to get a new fidelity term. However, for real images, the supposition of uniformly distributed

histogram may fail. Moreover, the indifferentiability of the triangular-type piecewise PDF would lead to

a non-smoothed minimization problem. On the other hand, our experiments show that good denoising

results also can be achieved by replacing the second part of the PDF by an easily optimized Gaussian

function. Thus the proposed method can also efficiently remove mixture of Gaussian and impulse noise.

Let us mention that if we use the two-sided exponential distribution to approximate the second part of

the PDF of the noise and when p1 is the delta function, together with the total variational regularization,
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σ = 5 σ = 10 σ = 15

r → 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

Noisy 18.76 15.76 14.04 18.43 15.61 13.95 17.94 15.38 13.81

Two-phase 25.40 24.77 24.13 24.34 23.94 23.45 23.32 23.02 22.67

ACWMD+K-SVD 26.07 25.27 24.51 25.50 24.91 24.31 24.64 24.19 23.77

[26] 30.45 27.75 25.95 28.45 26.59 25.34 27.33 25.69 24.55

Proposed 32.97 31.52 28.95 30.42 28.32 26.30 28.37 25.98 24.01

TABLE III

PSNR VALUES FOR DIFFERENT METHODS FOR THE BARBARA IMAGE WITH GAUSSIAN NOISE PLUS RANDOM VALUED

NOISE.

then our method would reduce to the two-phase method [24], [25] under some proper conditions.

TABLE III gives the denoising results of Barbara test images corrupted by Gaussian noise and random-

valued noise. In our experiment, the Gaussian noise level varies with σ = 5, 10, 15 and the density

of random-valued noise values with r = 0.1, 0.2, 0.3, respectively. For comparison, we test on the

performance of the median filter ACWMF [42] plus K-SVD [12], that is, we first filter the noisy images

by ACWMF and then denoise the output of ACWMF with K-SVD. The two-phase based methods [25]

and [26] will be compared. For the tuning of parameters for different methods, in ”ACWMF+K-SVD”

algorithm, the variances of Gaussian noise are all supposed to be known. We test several parameters

(including the suggested ones in [24], [25]) for the two-phase method and pick the results with the

highest PSNR in our comparisons. The choice of initial values for the proposed method is the same as

section IV-B. It can be seen that the parameters of our method do not need to be tuned manually for

different noise levels. The control parameters in the proposed method can be adaptively adjusted. This

is another advantage of our method in removing mixed noise.

To show the efficiency of the proposed method and make a comparison with other methods for some

real noisy images, the denoising results of KSVD [12], the proposed method and a wavelets-based method

BM3D [7] are shown in Fig.6. The methods in KSVD and BM3D require the true noise variance, thus in

this experiment, we use the right side of (44) to estimate the noise variance for KSVD and BM3D. For

real images, it is difficult to give an objective index such as PSNR values to evaluate the quality of the

restorations since there is no true image. However, we can give the noise removed by different methods

to make a comparison. From the noise images shown in the second row, it can be seen that the proposed

method gives better result than KSVD’s since there is less information in the noise image removed by
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(a) Real noisy image (b) KSVD [12] (c) Proposed (d) BM3D [7]

(e) Noise removed by

KSVD

(f) Noise removed by pro-

posed

(g) Noise removed by

BM3D

Fig. 6. Denoising the real Brain MR image.

the proposed algorithm. Let us mention that the proposed model would have a better performance if the

noise difference is larger. In this experiment, it seems that the BM3D has a slightly better performance

than the proposed model. This is because the noise difference in this real image is relatively small and

the BM3D method has a better performance than the dictionary learning methods. However, one can

integrate our method with BM3D to further improve the denoising result.

V. CONCLUSION AND DISCUSSION

We provide a general framework to remove mixed noise using the PDF. A method is proposed to

solve the MLE problem of mixture distribution. Though it is essentially equivalent to the well-known

EM algorithm, here we give the EM algorithm another interpretation through continuous constraint

optimization. We also further explain the connections between the classical EM algorithm and alternating

algorithm. By combining the sparsity regularization and dictionary learning techniques, a novel and

efficient model is designed to removing mixed noise such as Gaussian-Gaussian mixture noise, impulse

noise, Gaussian plus impulse noise and others. Besides, we study the variance estimation from the given

noisy images and offer a method to tune the initial parameters. This makes the proposed method to be

very practical. Our model is a general one since it can work well under Gaussian, non-Gaussian noise

and even their mixtures. Experimental results have demonstrated its better performance compared with

other related state-of-the-art algorithms.
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The computation complexity for each outer iteration in the proposed method is slightly more than

K-SVD algorithm. Thus our method is slower than some methods such as two-phase methods since

the sparse coding and dictionary learning are often time consuming. Generally speaking, for 256× 256

images, the CPU time for one outer iteration for our method is about 40 seconds with our unoptimized

Matlab codes on a PC equipped with 3.2 GHz CPU. The sparse coding and dictionary learning steps

cost about 12 and 26 seconds, respectively. It costs less than 1 second for the reconstruction step, and

about 1 second for the noise clustering step include the parameters estimation step. It was observed that

the sparse coding and dictionary learning part are consuming the most of the computation time.

Note that our method is easy to be paralleled. Besides, fast split algorithms to solve l0 minimization

algorithm can also be used to improve the computation. This will be for our future research. For sparse

coding and dictionary learning, some recently algorithms such as [33], [34] can be adopted with some

modifications for our model.

For different types of noise, the computational complexity of our algorithm for one outer iteration

is almost the same since the mathematical models are the same for different kinds of the noise. One

important factor that influences the computational cost is the noise level. Generally speaking, images

with high noise levels need more outer iterations.

Although we only discuss the L2 + L2 type model in this paper, it can be seen that other Lp + Lq

models can also be used.

Our method has the potential to be used for images segmentation and registration. For example, a

possible extension is to segment images with non-parameterized mixture distribution with the proposed

optimization framework.
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APPENDIX A

PROOF OF PROPOSITION 3

By proposition 2, equation (13) and the first formulation of (15), we get −L(fν+1,Θν+1) = H(fν+1,Θν+1,uν+2),

−L(fν ,Θν) = H(fν ,Θν ,uν+1).
(50)
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On the other hand, the second equation in (15) provides

H(fν+1,Θν+1,uν+2) 6 H(fν+1,Θν+1,uν+1) 6 H(fν ,Θν ,uν+1), (51)

thus −L(fν+1,Θν+1) 6 −L(fν ,Θν), and the conclusion holds.

APPENDIX B

PROOF OF PROPOSITION 4

Suppose (f∗,Θ∗) is a global minimizer of −L, and let u∗ = (u∗1, u
∗
2, · · · , u∗M ) with its component

function u∗il = r∗l pl(gi−f∗i )∑M
s=1 r

∗
sps(gi−f∗i )

, then u∗ ∈ ∆+ and

H(f∗,Θ∗,u∗) =
N∑
i=1

ln
M∑
l=1

r∗l pl(gi − f∗i ) = −L(f∗,Θ∗). (52)

Please recall that min
f,Θ
−L(f,Θ) = min

f,Θ,u∈∆+

H(f,Θ,u) in equation (13), thus we have min
f,Θ,u∈∆+

H(f,Θ,u) =

−L(f∗,Θ∗) = H(f∗,Θ∗,u∗), which means (f∗,Θ∗) is a global minimizer of H.

Conversely, we assume (f∗,Θ∗,u∗) is a global minimizer of H but (f∗,Θ∗) is not the global

minimizer of −L, then there must be a point (f̂ , Θ̂) such that −L(f̂ , Θ̂) < −L(f∗,Θ∗). Similarly,

we let û = (û1, û2, · · · , ûM ) with ûil = r̂lpl(gi−f̂i)∑M
s=1 r̂sps(gi−f̂i)

, one can calculate H(f̂ , Θ̂, û) = −L(f̂ , Θ̂) <

−L(f∗,Θ∗) = H(f∗,Θ∗, ū) 6 H(f∗,Θ∗,u∗), which is contradicted with the assumption. Here ū =

(ū1, ū2, · · · , ūM ) and ūil = r∗l pl(gi−f∗i )∑M
s=1 r

∗
sps(gi−f∗i )

, the last inequality is obtained in terms of ū is a minimizer

of H(·, ·,u) for fixed f∗,Θ∗.
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