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Abstract. In this paper, we provide a new model for simultaneous de-
noising and illumination correction. A variational framework based on
local maximum likelihood estimation (MLE) and a nonlocal regulariza-
tion is proposed and studied. The proposed minimization problem can
be efficiently solved by the augmented Lagrangian method coupled with
a maximum expectation step. Experimental results show that our model
can provide more homogeneous denoisng results compared to some ear-
lier variational method. In addition, the new method also produces good
results under both Gaussian and non-Gaussian noise such as Gaussian
mixture, impulse noise and their mixtures.

1 Introduction

Image denoising is a fundamental technique of image processing. A large number
of denoising methods have been proposed. It is common to assume that the noise
is additive, i.e.

f(x) = u(z) + n(z),

where f,u,n : 2 C R? — R are the observed noisy image, true image and
noise, respectively. Image denoising is to recover u for any given f and a priori
knowledge of n. Variational method is one of the most efficient methods. It has
now grown as a popular and widely used tool in image processing. Since the
ROF model was proposed in [1], many variants based on total variation (TV)
had been designed for different denoising tasks due to its good edges-preserving
properties. Extending ROF, the authors in [2-5] have used L; norm or its linear
combinations as the fidelity term to removing impulse noise. In order to bet-
ter preserve some small structures such as textures, an efficient method called
nonlocal mean was discussed in [6]. Motivated by the nonlocal mean and the
graph theory, the nonlocal TV variational framework base on nonlocal operators
was proposed in [7]. In [8], it was extended to nonlocal Mumford-Shah regu-
larizers for image restoration. However, all these methods do not consider the
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varying illumination in the images. Moreover, it is also hard to treat cases that
the intensity values are inhomogeneous.

Illumination correction or bias field correction is very important for real im-
ages. The artifacts caused by smooth, spatially varying illumination, although
not usually a problem for visual inspection, can dramatically impede automated
processing of the images. A widely accepted bias model, such as in MRI data, is
the multiplicative bias field, which assumes that the observed signal f is equal
to an uncorrupted signal u scaled by some bias 3, i.e. f = fu. Then the appli-
cation of a logarithmic transformation to the intensities allows the artifact to be
modeled as an additive bias field In f = Inu + In 8. There are some works based
on this logarithmic additive model for image segmentation such as [9-11] etc..

Motivated by modeling the illumination bias with a multiplicative field in
segmentation problem, in this paper, we propose an unified model for denoising
and correcting illumination simultaneously with different types of noise include
Gaussian noise, impulse noise and their mixtures. Our model is built on M-
LE and nonlocal regularization. To be different from the traditional regularized
MLE, we construct a novel block-based adaptive data-fidelity term to handle
inhomogeneous illumination and the noise. Besides, our approach do not need
any additional constraints such as regularization on the bias function £ to keep it
smooth. Anther superiority of this model is that it can work well under different
types noise like Gaussian, impulse noise, Gaussian noise plus impulse noise. The
new model can be efficiently optimized by an extended augmented Lagrangian
method (ALM) for nonlocal regularization according to the recently proposed
ALM framework [13, 14] together with a maximum expectation process. These
algorithms extend the Split-Bregman method of [17].

The rest of the paper is organized as follows: Section 2 gives our proposed
model. Section 3 contains the optimization algorithms, while numerical experi-
ments are presented in Section 4

2 The Proposed Model

2.1 Some Model Assumptions

In this paper, we consider the noise model with illumination bias

f(x) = B(z)(u(z) + n(z)), (1)

where f is an observed noisy image, u stands for the ground truth image, n
represents noise and [ is a illumination bias function. In order to get a suitable
denoising cost functional, we have the following assumptions:

— Al: the noise n(z) at each location z is a realization of a random variable &
with Gaussian mixture probability density function (PDF) Zszl Yipk(2; cky 0F).
Here pg(z; ¢k, O']%) is the 1-D Gaussian PDF parameterized by mean c; and

variance U,%, and 7y is the mixture ratio which satisfies >, ; v = 1. This
is an extended Gaussian noise model.
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— A2: the bias function S(x) > 0, and /8 is smoothly varying. Motivated
by [12], we use the following method to describe the smoothness of 5: In a
small neighborhood O, centered at x, § satisfies f(y) = B(x) when y € O,.

Now, we suppose the intensity value of the observed pixels at location =,
namely f(x), is a realization of a random variable 1, then according to assump-
tion Al and model (1), we have

Proposition 1 The PDF of n has the expression
2= cBla) U(I)B(x)F)
Z \/%m( ) ( 207 5%(x) '

In the next, we shall use this PDF to construct a local data-fidelity in terms
of MLE and some model assumptions.

2.2 The Local Fidelity Term

Let us construct a new local data term according to the pixel density function in
the section. Let © = {1, ,vx,c1, *+ ,CK,0%, -+ ,0%, B} is a parameter set.
By independence assumption of f(z), the PDF expression in the proposition 1
and a likelihood process, one can get the continuous functional in a neighborhood
O, centered at y

@)~ eBl@) —u@B@)Y
Ly(w. 8: 1) = / ylnzmakﬁ( ] Xp( 20752() )d |

Note that 8(z) can be replaced by 8(y) when = € O, in terms of assumption
A2, thus L, becomes

Ly(ua@; f) =

~ % [f(@) — erBy) — u(=)By))?
/oy 1“; VaroBly) ( 2035 (y) > -

At this time, we get a local data fidelity term D, (u,©) = —L,(u,O; f(z)) in
Oy. If we consider the different contributions to the fidelity D, in terms of the
distance from the neighborhood center, then we can assign some weights to
different pixels. A common choice for this is the so-called Gaussian smoothness,
and thus we get a cost functional

K

x.

- ) (@) = aBly) - u@Bu)?
Dy, €)= /of”y i ;raw() p< 202 52(y) >d

Here G, is a Gaussian kernel with a given standard deviation o. Our objective
is to recover all the degraded pixels. Thus we need to minimize all the local data
fidelity. We shall use the cost functional

— ¢ — u(w)]
D(u,0) /D (u,0)d // Go(y— xlnzmgkﬁ ELIO) 557 dzdy.
k




4 Lecture Notes in Computer Science: Authors’ Instructions

Using properties of the Gaussian kernel, G,(y — ) = 0 when = ¢ O, by
choosing an appropriate o, the neighborhood O, in the second integration can
be dropped. However, this new data-fidelity term is not easy to minimize due to
the log-sum function. We use the conclusion of the following proposition [15,16]
to overcome this difficult.

Proposition 2 For all ap(z) > 0, let A = {¢p(x) = ($1(x), -+, pi(x)) : Zle or(z) =
1, ¢r(x) > 0}, then

K K
—lnzak 2) exp(— (@) =¢g;gA{Z ~Inag(e >>¢k<x>+2¢k<x>1og¢k<x>}.
k=1

k=1

563~ s~ i)

2
20},

2

Yr(z) =

By applying Proposition 2 with ay(z) =

9

mdkﬁ( )

D(u, ©) becomes

D(u,0) //G — ) mm {Zk 1[% In vy,
+ In(V2703,8(y)) + In ¢y ()] dr.(x) }dady.

Unlike the common methods to choose the negative log-likelihood as the data-
fidelity term, we introduce a functional E(u,©,¢) with an additional variable

¢:
B(u,0,4) =

T

— o —u(x))’

K
| [ Gotw=a ; o7~ % V2R + () | G ()

and consider the the minimization problem

(u", 0%, ¢")=argmin E(u,6,9) (2)
u,0,pc A

to be solved by the following alternative minimization procedure:
¢+t = argmin E(u”, 0", ¢),
A

v+l gu+l oea v+1 3)
(uth OYtl) = argmin E(u, ©,¢" ).
u,®
Actually, the above iteration scheme can be interpreted as the well-known
expectation-maximization (EM) algorithm. The updating of ¢ and © corre-
sponding to the E-step and M-step, respectively. One can also prove that

Proposition 3 The sequence u”, 0" produced by iteration scheme (3) satisfies
D(uvtt e+t < D(uv,0v).

Thus we can take E(u, O, ¢) as the data-fidelity term. Compared to the model
that directly uses D(u, ©), we get some close-form solutions for the sub-problems
when optimizing E(u, O, ¢).
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2.3 Nonlocal TV

Nonlocal regularization could preserve repeated structures and textures and at
the same time remove noise. The nonlocal denoising method was first proposed
by Buades ete. [6]. In [7], Gilboa and Osher defined a variational framework based
nonlocal operators. Let us review some definitions and notations on nonlocal TV
regularization. Let 2 C R?, Hy, = L?(§2), Hy = L*(2 x 2) and w(z,y) € Hy
be a nonnegative symmetric weight function. The nonlocal gradient operator
Vw : Hy — Hs is defined as the vector of all partial derivatives at x such that:

(Vo ou)(x) = Vyu(z,y) = (u(y) — u(@))vw(z,y).

The inner product in H; and H is defined as

< U, v >p,= / u(z)v(x)dr, < p,qg>p,= /
7}

] /Q p(z,y)a(, y)dydz.

Naturally, the isotropic L1 and Le norms in Hs is

Ioll = | Wd |p||2\/ | [ ot raga.

The nonlocal divergence operator div,, : Hy — H; is given by the standard
adjoint relation

< Vo, p >p,= — < divyp,u >H,,

which leads to
divap(z) = /Q (p(z,y) — ply,2)) /(@ g)dy.

Thus the nonlocal Laplacian operator A, : H; — H; is given by

Ayu(z) = div, Vyu(z) = 2/9(u(y) — u(x))w(z,y)dy.

With these notations, the nonlocal TV functional

Roy() = ||Vt = /Q \/ /Q (ulz) — u(y))?w(z, y)dydz.

In this paper, we shall use the following weighting function [6]:

wf(xvy) = exp{fff? Ga(2)(f(= +2»]Zl)2* fly+2)) dz}. @
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2.4 The Proposed Cost Functional

The data-fidelity term E(u,©,¢) together with the nonlocal TV norm yield
the following new cost functional for simultaneous denoising and illumination
correction :

J(“v @a ¢) = E(“‘? 67 ¢) + :U“HVU-)UHla

where p > 0 is a regularization parameter.
We need to impose some constraint condition on the parameters

2 2
@:{717"' sy VKClytr ,CK, 07, " 70-K76}

and ¢. For ~;, we require Zszl v, = 1 since it represents the mixture ratio. The
¢r(x) is actually a probability distribution of the pixel f(z) contaminated by
the noise comes from the k-th Gaussian distribution with mean c; and variance
o). Thus, the constraint ¢ € A can guarantee this.

3 Algorithm: Augmented Lagrangian Method and EM

Operator splitting is an efficient method to solve L; minimization. In recent
years, many efficient algorithms based on operator splitting have appeared, such
as split Bregman method [17], augmented Lagrangian method (ALM) [13,14],
Douglas-Rachford splitting [18] and so on. These methods are all equivalen-
t under certain conditions. In [13,14], the authors only considered the local
L; regularization, here we extend the split Bregman method [17] following the
framework of Tai and Wu [13, 14]. The nonlocal TV in our model can be effi-
ciently optimized with ALM.

In order to apply augmented Lagrangian method, the original minimization
problem

(u*,0%,¢") = argmin J(u,O,d)
u,0,0€A

is reformulated as a constraint optimization minimization problem:

(u*,d*,0%,¢*) = argmin FE(u,0,¢) + p|ld||y s.t. d=V,u. (5)
u,d,0,pc A

The augmented Lagrangian functional for this constrained minimization problem
is:

£(u,d,€,6,) = B(1,0,0) + ulldl|1+ < \, (4= Vo) >, +51d — Voul}

where the Lagrangian multiplier A(x,y) € Ha, and r > 0 is a penalty parameter.
It can be shown that one of the saddle points (&, d,é,q@,ﬁ) of L(u,d,O, ¢, \)
is a solution of (5). We can search a saddle point by the following alternative
algorithm:

u,d,0,$€A (6)

(utl dvtt ev+l ¢v+l) = argmin  L(u,d, 0, ¢,\"),
AL = AV 4 p(dv =V ur .
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First, let us derive the updating formulations for «**' and d”*'. Denote

X '%—ck—uw ,
u):/Q/QGU( Z or (x)dady.

k=1

Ignoring the constant terms, the minimization problem for u and d can be rewrit-
ten as

)\V
(u*h,d" ) = argmin H(u) + pld|, + §|Id — Vou+ —|[3.

u,
We define b = —%7 together with the second updating formula in (6), one get
the following iterative scheme:

{ (uTt @) = argmin  H (u) + p|d|; + 5lld = Vu — b3, @
d

bu+1 — bu:l kuu+1 _ du+1.

Note that (7) actually is the split Bregman iteration and b is the Bregman
vector [19]. We shall use an alternative minimization for v and d. The Euler-
Lagrange equation for w is:

S z o
Z ——r A )u = Z o2y [ G ) ——dy — ¢f | +rdiv, (b —d"),
k:l =1 \'Fk
(8)
The above equation is linear. Its approximate solution ©**! can be easily com-

puted by a Gauss-Seidel process.
v+1

Once u and b is known, the minimizer d“*! is given by the following
shrinkage operation:

Vourth 4+ b

v+1 __ : v+1 v
d"™ = shrink(V,u""" + b 7“) Vou L +b7|

max{|V u"T! 4+ 0| — g,O}
(9)

For ¢”+1 and @Y1, both of them have explicit solutions. To simplify the
notations, we define

”ajé ’YIZ ex _ 1 - f(l‘) —c”—u”'Hx ?
i) & e p< s | Gt )(ﬂy(y) - i@) dy>,

V+1 uu+1
srmey [ Gg<y—x)(+l)y+l”f< )6+ (2)de

K
L /Q Goly — 2) ()¢ (2)da

2 (o7
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Then the solutions for the E-step and M-step are given by:

Z+1(x) _ QZ( )

ZQz

/ ¢V+1
V+1
/ 1dx

o [ st @le / Ga(y—x)%dy—u”“(:@]dw
/ ¢V+1 ’
”'H / Go( (ﬁfy((:v)) — CZ-H — u”“(x))Q dydz
/¢u+1 ’
—s"THy) + /(s* 1 (y))2 + 4t T (y)
5 .

(o)t =

B y) =

(10)
Our algorithm with weight w updating can be summarized as in the following:

Algorithm 1 (ALM-EM algorithm) Given K, Choosing ©°,u°, ¢°,b°, d°, and
the parameters pi,r. Let v =0 and calculate the initial weight w!. Do:

1. ALM step: updating u**1,d*** and b**+1 according to (8), (9) and the second
equation in (7), respectively.

2. If |Jur ™t —w”||3 < 1075||u”||3, end the algorithm; else go to the next step.

3. E-step: updating ¢* 1 using the first equation of (10).

4. M-step: updating the parameter set OV using in (10).

5. Updating weight: if mod(v + 1,5) == 1, compute Wt BT using (4). Set
v=v+1, and go to the ALM step.

4 Numerical Experiments

4.1 Parameters and Initial Values Selection

In this section, we give some guidelines and criterions on selection of the param-
eters and initial values. Here we suppose the observed image f(z) € [0, 1].

The parameter K is the number of the Gaussian PDF and it usually set to
2 or 3. Larger K can better models the true distribution of noise in some real
applications, but the algorithm would be more time-consuming. In this paper,
we set K = 2 for all the experiments.

The o in the Gaussian kernel GG, controls the smoothness of bias function .
Generally speaking, we need to choose a large value to keep the 8 smooth due to
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the fact that the illumination or intensity inhomogeneity in an images is often
slow-varying. In our tests, we choose o = 10.

The regularization parameter p depends on the noise level. We find that p in
our model is not so sensitive to the noise level as in the nonlocal ROF model. This
might be related to the fact that the introduction of the noise variance parameter
o2, and o can adaptively balance the data-fidelity and the nonlocal TV terms
together with . Experimental results show that u € [1, 15] can yield good results
for different noise levels. In the experiments, unless otherwise specified, we set
© = 5. In addition, we set penalty parameter r = 200.

The initial value ° = d° = 0,7 = ~§ = %,c? = =0,07 =0.1,0 =
0.01,¢1 = 1,¢2 = 0 are used. We can assume the desirable 8 to be around 1,
and thus we set 3° = (G, * f + 1.5)/2. Finally, we let u® = G, * %

4.2 Experimental results

We first mention that the proposed model will reduced to the nonlocal ROF
model by setting control parameter 5 = 1 and others in @ to be equal, i.e.
Y1 = 72,07 = o3, and so on. Thus if the illumination of an image is very
homogeneous and the noise obeys a single Gaussian distribution, our method
produces similar results as the nonlocal ROF model.

The superiority of our model is that it can work well under inhomogeneous
illumination even with noise mixing. We shall tests these out.

Fig. 1 shows the results of the nonlocal ROF model [7] and our model under
Gaussian mixture noise. The original image is displayed in Fig.1(i), one can
find that the illumination of the original image itself is not homogeneous and
the intensity on the left side is slightly lighter than the one on the right. We
add noise and get the observed image f as shown in Fig.1(a). Here, the image
f is corrupted by two additive white Gaussian noise with standard deviation
% and %, respectively. The mixture ratio is about 1 : 3. As can be seen
from the Fig.1(b) and Fig.1(c), the denoising result provided by the proposed
method is better than the nonlocal ROF model. Firstly, the intensity of the
reconstructed image in Fig.1(c) is more homogeneous than the one in Fig.1(b).
This is caused by the use of 8 in our model. It can correct the inhomogeneous
illumination. Secondly, our method can better preserve details in the texture
areas and simultaneously clean the noise in the flat areas by adaptively adjusting
the data term and nonlocal TV term through the control parameters o7 and ¢x.

We use PSNR = 101log;, m to evaluate the quality of the denoising images,

where f, f are observed and reconstructed images, respectively. For the proposed
model, obviously, we need to define f = [u and then calculate the PSNR to
make comparisons with other methods. The PSNR values for nonlocal ROF
and the proposed are 23.94 and 27.34, respectively. Some estimated functions
and parameters in the proposed approach are illustrated in Fig.1(d)-1(g). For
visualization, we normalized § in [0,1] in Fig.1(d). The corrected noisy image
can be found in Fig.1(e). We also calculate the variances oy, o s of noisy image f

and the corrected image % respectively. We get oy = 0.0576, 0 5= 0.0486, which
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indicates the intensity in the latter image is more uniform. As mentioned earlier,
our model can group the pixels into several clusters using different variances of
the noise. In Fig. 1(f) and 1(g), the finally estimated partitions are displayed.

A denoising result with the proposed model under impulse noise plus Gaus-
sian noise are given in Fig. 2. In this experiment, the image is contaminated by
25% salt-and-pepper noise together with Gaussian noise with standard devia-
tion 5. Here we take the common used adaptive median filter (AMF) [20] for
comparison. It can be seen the AMF can clean impulse noise efficiently, but it
fails in removing Gaussian noise and retaining the textures. Compared with the
AMF, our method can give much better results. The denoised images and the
estimated bias function provided by our method are displayed in the last two
figures.

Fig. 3 shows result of applying the algorithm to MR images. In this experi-
ment, we need to tune the regularization parameter p = 15 to get a smoothed
image since the level of noise in the images is low. The denoised, corrected images
and the estimated bias function 8 with the proposed algorithm are all illustrated
in the last three figures. A benefit of the intensity correction is that the corrected
images can be segmented easily with some center-based clustering methods such
as Chan-Vese model, but it is very difficult to obtain a desirable segmentation
result from the original data f.

5 Conclusion

We have presented an approach for simultaneous illumination correction and
denoising. Numerical experiments demonstrated the method is very superior for
mixed noise (e.g. impulse noise, Gaussian noise plus impulse noise etc.) compared
to some earlier proposed nonlocal variational PDE based models. In addition,
the non-uniform illumination function in the original data can be estimated and
corrected by using the bias function. Our method can be extended to image
segmentation, registration and some other computer vision problems.
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