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Abstract

The total variation based regularization method has been proven to be quite
efficient for image restoration. However, the noise in the image is assumed
to be Gaussian in the overwhelming majority of researches. In this paper, an
extended ROF model is presented to restore image with non-Gaussian noise,
in which the locations of the blurred pixels with high level noise are detected
by a function and two estimated parameters of noise, while the fidelity and
smoothness terms can be adaptively adjusted by updating these parame-
ters. In contrast to the previous method, our model can give a much better
restoration in some particular cases, such as the blurred image corrupted by
impulsive noise and mixed noise. Moreover, the proposed minimization prob-
lem is solved by the split Bregman iteration, which makes our algorithm very
fast. We provide some experiments and comparisons with other methods to
illustrate the high efficiency of our method.

Key words:
Total variation, Globally convex segmentation, Split Bregman iteration,
Mixed noise, Impulsive noise.

1. Introduction

Image deblurring, as a form of image restoration which is to recover latent
clear images from degraded ones, is well developed. But it still attract atten-
tions of so many researchers for it plays a active role in so many applications
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and the corresponding ill-posed inverse problem. Mathematically, the image
degraded process can be modeled by

𝑔 = 𝑘 ∗ 𝑓 + 𝑛

where 𝑔 : Ω → [0, 1] is the observed image, 𝑓 represents the original image, 𝑛
denotes noise, 𝑘 usually stands for a known space invariant blur kernel and
the symbol “∗” refers to the convolution operator.

Total variation (TV) based regularization technique was first introduced
in computer vision by Rudin, Osher and Fatemi [1]. It has been proved
to be quite efficient for regularizing images due to its good edge-preserving
property. The famous TV-based image deblurring model, namely the ROF
model, could be described as

𝑓 ∗ = argmin
𝑓

𝜇

2
∣∣𝑘 ∗ 𝑓 − 𝑔∣∣22 +

∫
Ω

∣∇𝑓 ∣.

Here 𝜇 > 0 is a scale parameter, the first term is a 𝐿2-based fidelity term
which can deblur the image, and the second is the TV smoothness term
which can suppress noise. Many numerical experiments (e.g. [1, 2, 3, 4])
have shown its efficiency under a small amount of Gaussian noise. However,
in many real world applications, noise in the image is often non-Gaussian,
such as impulsive noise, Gaussian noise plus impulsive noise, mixed Gaussian
noise, and so on. In these cases, reconstructions with ROF model are usually
not satisfactory.

In recent years, some variational methods of recovering images corrupted
by non-Gaussian noise have been explored. Nikolova et al. [5, 6] proposed
some nonsmooth fidelity terms such as 𝐿1-based fidelity terms to remove
impulsive noise using variational regularization method, and Bar et al. [7]
developed it by considering different Mumford-Shah (MS) functional regular-
ization. In [8, 9], Cai et al. introduced a two-phase method to deblur images
with both Gaussian noise and impulsive noise together, the main idea of
their method is that using median-type filters to identify the possible noisy
pixels and then employing the MS segmentation functional based variational
method to restore image. To be slightly different from [8], Huang et al. [10]
used TV regularization and 𝐿2 norm based fidelity term to reconstruct the
image, and then they offered a fast alternating minimization algorithm. Our
previous work [11] studied image restoration under mixed Gaussian noise
by TV-based maximum penalized likelihood estimation (MPLE) and the
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expectation-maximization (EM) algorithm. Compared with ROF model, all
of these approaches have their own superiorities in some certain special cases.

Other than the existing methods, in this paper, we discuss a new approach
that restoring images contaminated by mixed noise using globally convex
segmentation method and TV regularization. This note is related to [11],
and the key point is that, in each pixel, denoising and deblurring could be
automatically adjusted according to the estimated information of noise. To
be different from [11], we give a new model and a new algorithm in this study,
which has a slightly better restoration and requires much less computational
time.

The outline of the rest paper is as follows: In Section 2, the proposed the-
oretical model is presented. We describe how to solve the proposed minimiza-
tion problem by split Bregman iteration in Section 3, and our experimental
results are shown in Section 4. Finally, some conclusions and discussions
about this paper are given in section 5.

2. The Theoretical Model

In [11], the authors assume the intensity of noise 𝑛(𝑥) is a random variable
at each point 𝑥, and all these random variables {𝑛(𝑥) : 𝑥 ∈ Ω} are indepen-
dent and identically-distributed with a Gaussian mixture model. Then using
the TV-based MPLE for noise and EM algorithm, a minimization problem
is introduced to restore the blurred image in the presence of mixed noise:

(𝑓 ∗, 𝛼∗
1, 𝛼

∗
2, (𝜎

2
1)

∗, (𝜎2
2)

∗) = argmin
𝑓,𝛼1,𝛼2,𝜎2

1 ,𝜎
2
2

𝐸(𝑓, 𝛼1, 𝛼2, 𝜎
2
1, 𝜎

2
2).

Where

𝐸(𝑓, 𝛼1, 𝛼2, 𝜎
2
1, 𝜎

2
2) = 𝜆1

∫
Ω

∣∇𝑓 ∣ d𝑥+
2∑

𝑙=1

∫
Ω

𝛼𝑙d𝑥

+
1

2

2∑
𝑙=1

∫
Ω

𝜔𝜈
𝑙 (𝑥) ln𝜎

2
𝑙 d𝑥−

2∑
𝑙=1

∫
Ω

𝜔𝜈
𝑙 (𝑥) ln𝛼𝑙d𝑥

+
1

2

2∑
𝑙=1

∫
Ω

[(𝑘 ∗ 𝑓)(𝑥)− 𝑔(𝑥)]2

𝜎2
𝑙

𝜔𝜈
𝑙 (𝑥)d𝑥,

𝛼1, 𝛼2, 𝜎
2
1, 𝜎

2
2 are four unknown variables , and

𝜔𝜈
𝑙 (𝑥) =

𝛼𝜈
𝑙 𝑝𝑙((𝑘 ∗ 𝑓 𝜈)(𝑥)− 𝑔(𝑥); (𝜎2

𝑙 )
𝜈)∑2

𝜍=1 𝛼
𝜈
𝜍 𝑝𝜍((𝑘 ∗ 𝑓 𝜈)(𝑥)− 𝑔(𝑥); (𝜎2

𝜍 )
𝜈)
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is a known weighting function for given the 𝜈-th iterative values of 𝑓, 𝛼𝑙 and
𝜎2
𝑙 , here 𝑝𝑙 is the Gaussian density function parameterized by (𝜎2

𝑙 )
𝜈 . More

details about this model can be found in [11].
The above model, in fact, is an extension of ROF model, since if the

variables are all fixed constants such that 𝛼1 = 𝛼2, 𝜎
2
1 = 𝜎2

2 , it would be
reduced to the ROF model. We observe that

∑2
𝑙=1 𝜔

𝜈
𝑙 (𝑥) = 1, and 𝜔𝜈

𝑙 (𝑥) plays
a role of the characteristic function of a certain area. Therefore, ignoring 𝛼𝑙

and adding a constraint on the length of borderline curve of the area, the
above functional could be approximated by level set representations [12] as
follows:

𝐸(𝑓, 𝜙, 𝜎2
1, 𝜎

2
2) = 𝜆1

∫
Ω

∣∇𝑓 ∣+ 𝜆2

∫
Ω

∣∇𝐻(𝜙)∣

+
1

2

∫
Ω

𝐻(𝜙) ln𝜎2
1 +

1

2

∫
Ω

(1−𝐻(𝜙)) ln𝜎2
2

+
1

2

∫
Ω

(𝑘 ∗ 𝑓 − 𝑔)2

𝜎2
1

𝐻(𝜙) +
1

2

∫
Ω

(𝑘 ∗ 𝑓 − 𝑔)2

𝜎2
2

(1−𝐻(𝜙)).

Where 𝜆1 > 0, 𝜆2 > 0 are both regularization parameters, and 𝜙,𝐻 denote
the level set and Heaviside functions, respectively.

The cost functional 𝐸 is non-convex respect to 𝜙 and may have local
minima. Recently, some globally convex segmentation (GCS) methods which
are very reliable have been proposed by Chan et al. [13] and Bresson et al.
[14]. By applying the GCS framework, our new model can be expressed as

(𝑓 ∗, 𝑢∗, (𝜎2
1)

∗, (𝜎2
2)

∗) = argmin
𝑓, 0⩽𝑢⩽1, 𝜎2

1 , 𝜎2
2

𝐸(𝑓, 𝑢, 𝜎2
1, 𝜎

2
2), (1)

and

𝐸(𝑓, 𝑢, 𝜎2
1, 𝜎

2
2) =

1

2

∫
Ω

𝑢 ln𝜎2
1 +

1

2

∫
Ω

(1− 𝑢) ln𝜎2
2

+
1

2

∫
Ω

(
𝑢

𝜎2
1

+
1− 𝑢

𝜎2
2

)(𝑘 ∗ 𝑓 − 𝑔)2 + 𝜆1

∫
Ω

∣∇𝑓 ∣+ 𝜆2

∫
Ω

∣∇𝑢∣.

We claim that this model has a better performance than others in sup-
pressing mixed noise. Some intuitionistic interpretations are given in the
following paragraph.

Let us emphasize again that the ROF model is a special case of the
proposed method with 𝜎2

1 = 𝜎2
2, and 𝜆2 = 0. In order to better explain the
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superiority of our approach, let us consider a particular type of mixed noise—
impulse noise. When a blurred image corrupted by impulse noise, where only
a portion of the blurred pixels are contaminated by noise, in such case, the
image domain Ω can be divided into two nonoverlapping parts Ω1 and Ω2, one
of which (Ω1) contains the pixels only with blur and the other (Ω2) contains
high level noise. On the other hand, if we solve (1) iteratively with alternat-
ing minimization algorithm, the discussed image restoration problem would
split into three steps: noise image segmentation, parameter adjustment, and
image restoration. Suppose 𝑓, 𝜎2

1, 𝜎
2
2 are known, minimizing 𝐸 with respect

to 𝑢 is an image segmentation problem, however, it is different from the
traditional image segmentation in which the pixels are usually clustered by
different means, and here the pixels of the estimated noise image are classi-
fied according to different variances. The model (1) is originally derived from
EM algorithm (cf. [11]), and it is well known that the segmentation results
with EM algorithm partly depend on the initial parameter values since the
EM algorithm only has local convergence. The GCS method do not depend
on the initial guess value and has a better performance in image segmenta-
tion (cf. [14]). Applying the GCS segmentation, we hope 𝑢(𝑥) = 𝜒Ω1(𝑥),
where 𝜒 is a characteristic function. Once the idealized 𝑢, 𝑓 are known, min-
imizing 𝐸 with respect to 𝜎2

1, and 𝜎2
2 leads to 𝜎2

1 =
∫
Ω1
(𝑘 ∗ 𝑓 − 𝑔)2/∣Ω1∣ and

𝜎2
2 =

∫
Ω2
(𝑘 ∗ 𝑓 − 𝑔)2/∣Ω2∣, respectively, where ∣ ⋅ ∣ denotes the area. Thus

in the image restoration step, the fidelity term (corresponding to the third

term) in the cost functional 𝐸 equals to ∣Ω1∣
2

+ ∣Ω2∣
2

= ∣Ω∣
2
. That is, the value

of fidelity term in our model is almost a constant for any levels of noise.
However, the total variation of the image in Ω2 is always larger than that in
Ω1 due to heavy noise exists in Ω2. As we expect, the smoothness term in
cost functional will play a greater role in Ω2 than Ω1 when minimizing 𝐸. In
other word, the local behaviors of denoising and deblurring can be adaptively
adjusted by 𝑢, 𝜎2

1, and 𝜎2
2 though a fixed global regularization term is utilized

in our model, this is much different from the existing method such as ROF
model.

The objective functional 𝐸 is convex with respect to 𝑓 and 𝑢, respectively.
However, it is only conditionally convex with respect to 𝜎2

1 and 𝜎2
2 provided

that

0 < 𝜎2
1 ⩽

2
∫
Ω
(𝑘 ∗ 𝑓 − 𝑔)2𝑢∫

Ω
𝑢

, 0 < 𝜎2
2 ⩽

2
∫
Ω
(𝑘 ∗ 𝑓 − 𝑔)2(1− 𝑢)∫

Ω
(1− 𝑢)

.

Now, let us introduce two variables 𝑧1, 𝑧2 such that 𝑧1 = ln𝜎2
1, 𝑧2 = ln𝜎2

2,
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then (1) becomes

min
𝑓,0⩽𝑢⩽1,𝑧1,𝑧2

⎧⎨⎩
𝐸(𝑓, 𝑢, 𝑧1, 𝑧2) =

1

2

∫
Ω

𝑢𝑧1 +
1

2

∫
Ω

(1− 𝑢)𝑧2

+
1

2

∫
Ω

[𝑢𝑒−𝑧1 + (1− 𝑢)𝑒−𝑧2 ](𝑘 ∗ 𝑓 − 𝑔)2 + 𝜆1

∫
Ω

∣∇𝑓 ∣+ 𝜆2

∫
Ω

∣∇𝑢∣

⎫⎬⎭ .

(2)
As a result, the above 𝐸 is convex with respect to 𝑧1 and 𝑧2, respectively.

We make the cost functional is convex with respect to each variable because
that the convexity ensures the alternating minimization (AM) algorithm can
be used to solve (2). We will discuss the algorithms in the next.

3. Algorithms

In this section, we present an efficient algorithm for minimization problem
(2). For convenience, let us denote

𝐻(𝑓, 𝑢, 𝑧1, 𝑧2) =

∫
Ω

𝑢𝑧1 +

∫
Ω

(1− 𝑢)𝑧2 +

∫
Ω

[𝑢𝑒−𝑧1 + (1− 𝑢)𝑒−𝑧2 ](𝑘 ∗ 𝑓 − 𝑔)2.

First, the AM algorithm splits (2) into three subproblems:
Subproblem 1,

𝑓 𝜈+1 = argmin
𝑓

{
1

2
𝐻(𝑓, 𝑢𝜈 , 𝑧𝜈1 , 𝑧

𝜈
2 ) + 𝜆1

∫
Ω

∣∇𝑓 ∣
}
.

Subproblem 2,

𝑢𝜈+1 = argmin
0⩽𝑢⩽1

{
1

2
𝐻(𝑢, 𝑓 𝜈+1, 𝑧𝜈1 , 𝑧

𝜈
2 ) + 𝜆2

∫
Ω

∣∇𝑢∣
}
.

Subproblem 3,

(𝑧𝜈+1
1 , 𝑧𝜈+1

2 ) = argmin
𝑧1,𝑧2

{
1

2
𝐻(𝑢𝜈+1, 𝑓 𝜈+1, 𝑧1, 𝑧2)

}
.

There are many methods could be used to solve subproblems 1 and 2, such
as the steepest descent method [1], fixed point iteration [3, 4], dual method
[15, 16], augmented Lagrangian method [17], split Bregman iteration [18],
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and so on. Considering the high efficiency and robustness of split Bregman
iteration, we will apply it to solve these subproblems.

The split Bregman methods [18] is a general 𝐿1 minimization technique.
To apply the split Bregman iteration to subproblem 1, we add the auxiliary
variable d𝜈+1

1 and the Bregman vector b𝜈
1 to the functional. Then we solve a

sequence of unconstrained problems defined by{
(𝑓 𝜈+1,d𝜈+1

1 ) = argmin
𝑓,d1

1
2
𝐻(𝑓) + 𝜆1

∫ ∣d1∣+ 𝜇1

2

∫ ∣d1 −∇𝑓 − b𝜈
1∣2,

b𝜈+1
1 = b𝜈

1 +∇𝑓 𝜈+1 − d𝜈+1
1 .

(3)

Similarly, the split Bregman formulas of subproblem 2 are given by{
(𝑢𝜈+1,d𝜈+1

2 ) = argmin
0⩽𝑢⩽1,d2

1
2
𝐻(𝑢) + 𝜆2

∫ ∣d2∣+ 𝜇2

2

∫ ∣d2 −∇𝑢− b𝜈
2∣2,

b𝜈+1
2 = b𝜈

2 +∇𝑢𝜈+1 − d𝜈+1
2 .

(4)

Here 𝜇1 > 0 and 𝜇2 > 0 are both parameters. More details and theoretical
results about this algorithm, please see references [18, 19].

The alternating minimization scheme is again employed for (3). Let us
denote 𝜔𝜈 = 𝑢𝜈𝑒−𝑧𝜈1 + (1 − 𝑢𝜈)𝑒−𝑧𝜈2 , then 𝑓 𝜈+1 in (3) is obtained by solving
the Euler-Lagrange equation

𝑘 ∗ [𝜔𝜈(𝑘 ∗ 𝑓)]− 𝜇1△𝑓 = 𝑘 ∗ (𝜔𝜈𝑔) + 𝜇1div(b
𝜈
1 − d𝜈

1), (5)

which is a linear equation and easy to solve by the conjugate gradient (CG)
method. Here 𝑘 is the conjugated function of 𝑘.

It is not difficult to show that minimization with respect to d1 in (3) can
be done explicitly by

d𝜈+1
1 = shrink(∇𝑓 𝜈+1 + b𝜈

1,
𝜆1

𝜇1

),

where shrink is an operator which has an expression

shrink(y, 𝜆) =
y

∣y∣ max{∣y∣ − 𝜆, 0}.

Next, let us define 𝑟 = 𝑧𝜈1 − 𝑧𝜈2 + (𝑒−𝑧𝜈1 − 𝑒−𝑧𝜈2 )(𝑘 ∗ 𝑓 𝜈+1 − 𝑔)2, then the
Euler-Lagrange equation of (4) with respect to 𝑢 is given by

−△𝑢 = div(b𝜈
2 − d𝜈

2)−
𝑟

2𝜇2

,whenever 0 < 𝑢 < 1,
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and we choose the fast Gauss-Seidel (GS) method to approximately solve
this system. Considering the constraint 0 ⩽ 𝑢 ⩽ 1 and then following [19], a
closed-form iteration scheme can be written by

𝛼𝑖,𝑗 = [div(b𝜈
2 − d𝜈

2)−
𝑟

2𝜇2

]𝑖,𝑗,

𝛽𝑖,𝑗 =
1

4
(𝑢𝜈1

𝑖+1,𝑗 + 𝑢𝜈1
𝑖−1,𝑗 + 𝑢𝜈1

𝑖,𝑗+1 + 𝑢𝜈1
𝑖,𝑗−1 + 𝛼𝑖,𝑗), (6)

𝑢𝜈1+1
𝑖,𝑗 = max{min{𝛽𝑖,𝑗, 1}, 0}, (7)

where 𝜈1 is the number of the GS inner iteration. As has been stated earlier,
d𝜈+1
2 has the form

d𝜈+1
2 = shrink(∇𝑢𝜈+1 + b𝜈

2,
𝜆2

𝜇2

).

Finally, we need to solve subproblem 3. It is easy to calculate the opti-
mality criteria for 𝑧𝜈+1

1 and 𝑧𝜈+1
2 are given by

𝑧𝜈+1
1 = ln

∫
Ω
𝑢𝜈+1(𝑘 ∗ 𝑓 𝜈+1 − 𝑔)2∫

Ω
𝑢𝜈+1

, (8)

𝑧𝜈+1
2 = ln

∫
Ω
(1− 𝑢𝜈+1)(𝑘 ∗ 𝑓 𝜈+1 − 𝑔)2∫

Ω
(1− 𝑢𝜈+1)

. (9)

As a result, the implementation of our model can be summarized as fol-
lows:
Algorithm Split Bregman iteration for the model (2)
Choose initial values 𝑓 0 = 𝑔, 𝑢0 = 1, 𝑧01 = ln(10−4), 𝑧02 = ln 1.0 = 0,b0

1 =
b0
2 = d0

1 = d0
2 = 0, set 𝜈 = 0, and do:

1. Compute 𝑓 𝜈+1 by (5) using a CG solver, and we refer to this step as the
CG inner iteration;
2. If ∣∣𝑓 𝜈+1 − 𝑓 𝜈 ∣∣∞ < 10−3, end the algorithm. Else, go to the next step;
3. d𝜈+1

1 = shrink(∇𝑓 𝜈+1 + b𝜈
1,

𝜆1

𝜇1
);

4. b𝜈+1
1 = b𝜈

1 +∇𝑓 𝜈+1 − d𝜈+1
1 ;

5. Find 𝑢𝜈+1 by GS inner iteration, i.e. calculating (6) and (7) repeatedly;
6. d𝜈+1

2 = shrink(∇𝑢𝜈+1 + b𝜈
2,

𝜆2

𝜇2
);

7. b𝜈+1
2 = b𝜈

2 +∇𝑢𝜈+1 − d𝜈+1
2 ;

8. Update 𝑧𝜈+1
1 , 𝑧𝜈+1

2 by (8) and (9), respectively;
9. 𝜈 = 𝜈 + 1, go to 1.
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Figure 1: The original image 𝐼 for the experiments.

4. Experimental Results

We present some numerical results of the proposed model in this section.
First of all, let us discuss how to choose the parameters which occur in our

algorithm. The experimental experiences tell us that the parameter values
are not needed to change according to the levels of noise. This stems from
the fact that the performances of denoising and deblurring can be adaptively
balanced by updating parameters 𝑧1 and 𝑧2 (recalling that 𝑒𝑧1 = 𝜎2

1, 𝑒
𝑧2 =

𝜎2
2 are two parameters of the variance of noise). So, in all the following

experiments, we set 𝜆1 = 5, 𝜇1 = 10𝜆1, 𝜆2 = 10−3, 𝜇2 = 10𝜆2, 𝑧
0
1 = ln(0.05)

for random-valued noise and 𝑧01 = ln(10−4) for other noise. Beyond that, the
CG inner iteration is ended when ∣∣𝑓 𝜈1+1 − 𝑓 𝜈1 ∣∣∞ < 10−3, where 𝜈1 is the
number of the CG iteration, and the iteration number of GS inner iteration
in the algorithm is set to 5.

The peak signal to noise ratio PSNR = 10 log10
𝑀×𝑁
∣∣𝑓−𝐼∣∣22 is taken to measure

the efficiency of our approach, where 𝑀 ×𝑁 is the image size, 𝑓 represents
the restoration, and 𝐼 stands for the original image. The clear original images
with size 256× 256 are shown in Figure 1.

Recently, an efficient algorithm called FTVd for ROF and TVL1 problem

min
𝑓

∫
Ω

∣∇𝑓 ∣+ 𝜇∣∣𝑓 − 𝑔∣∣1

was proposed in [20, 21]. So, we use their code which can be downloaded
freely from the internet for comparing different models with ours. In addition,
we will compare the presented method with some state of the art deblurring
algorithms such as SA-DCT in [22] and BM3DDEB in [23]. As is well know,
parameters are very important for such models (e.g. 𝜇 in ROF, TVL1) to
obtain a good reconstruction, thus in the following experiments, for each
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algorithm, we test different parameters values and choose the restoration
with the highest PSNR for the comparison.

Table 1: PSNR (dB) values and CPU time (s) in the experiment 1.

Deconvwnr Deconvreg ROF [22] [23] [11] proposed

PSNR 20.91 22.31 22.91 22.98 23.52 25.03 24.95

CPU time 0.08 0.57 2.52 6.28 6.50 53.41 14.33

4.1. Experiment 1, suppressing Gaussian mixed noise.

A comparison of the reconstructions obtained by Wiener filter, iterative
regularization technique, the ROF model, SA-DCT in [22], BM3DDEB in
[23], the method in [11], and the proposed algorithm is shown in Figure 2.
The Lenna image is blurred by an out-of-focus blur with radius 5, then is
corrupted by two Gaussian noise with different variances (𝜎2

1 = 2×10−4, 𝜎2
2 =

2× 10−2), and the mixing ratio is 3 : 1, see Figure 2(a). The reconstructions
with these seven algorithms are shown in Figure 2(b)-Figure 2(h), respec-
tively. Figure 2(i) is 𝑔 ⋅ 𝑢, the estimated image with low level noise, in which
the non-zero values should be the pixels with low level noise. It can be seen
that the proposed method produces much better result than other methods,
and has similar visual effects to [11]. However, it requires much less cpu time
than [11]’s. The corresponding PSNR values and the cpu time are summa-
rized in Table 1. The above experiment shows that our algorithm produces
better result than SA-DCT and BM3DDEB methods under Gaussian mixed
noise, however, one can incorporate our idea with SA-DCT or BM3DDEB
methods to get better results.

4.2. Experiment 2, suppressing salt-and-pepper noise.

The model (2) is especially suitable for deblurring image under impulsive
noise such as salt-and-pepper noise and random-valued noise, this is because
of the fact that a certain number of pixels in a image which is contaminated
by impulse noise are uncorrupted. Our method can automatically find them
by 𝑢 and give a good restoration, especially for high level noise.

For salt-and-pepper noise, the corrupted pixels have minimal intensities 0
or maximal intensities 1. Thus, according to this prior knowledge, the initial
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(a) 𝑔 (b) deconvwnr (c) deconvreg

(d) ROF (e) SA-DCT [22] (f) BM3DDEB [23]

(g) [11] (h) proposed (i) 𝑔 ⋅ 𝑢

Figure 2: Comparison: (a) blurred (out-of-focus blur, radius=5) image with mixed Gaus-
sian noise(𝜎2

1 = 2 × 10−4, 𝜎2
2 = 2 × 10−2). (b) restored by Wiener filter with Mat-

lab function “deconvwnr”. (c) restored by iterative regularization technique with Mat-
lab function “deconvreg”.(d) restored by ROF, 𝜇 = 150. (e) restored by SA-DCT in
[22], parameters 𝜀1 = 0.65, 𝜀2 = 0.002. (f) restored by BM3DDEB in [23], parameters
𝜀𝑅𝐼 = 0.0001, 𝜀𝑅𝑊𝐼 = 0.001. (g) restored by the method in [11]. (h) restored by the
proposed method. (i) the estimated image with low level noise in the proposed approach,
that is, 𝑔 ⋅ 𝑢.
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(a) 𝑔: 20% (b) Proposed (c) FTVd,𝜇 = 40 (d) [11]

(e) 𝑔: 50% (f) Proposed (g) FTVd,𝜇 = 16 (h) [11]

Figure 3: Recovering blurred (Gaussian blur, 𝜎 = 3.0) images with salt-and-pepper noise
using different methods. First column: from top to bottom 20%, 50% salt-and-pepper
noise. Second, third, fourth column: reconstructions with the proposed method, TVL1,
and method in [11], respectively.

Table 2: PSNR (dB) values and CPU time (s) in the experiment 2.

PSNR (dB) CPU time (s)

Noise level [11] TVL1 proposed [11] TVL1 proposed

20% 26.13 25.30 26.32 95.43 6.63 3.70

50% 25.96 25.06 26.27 187.05 7.19 4.12

80% - 22.19 26.11 - 5.88 4.62

95% - 14.94 24.29 - 13.48 5.60
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(a) 𝑔: 80% (b) Proposed (c) FTVd,𝜇 = 6

(d) 𝑔: 95% (e) Proposed (f) FTVd,𝜇 = 2

Figure 4: Recovering blurred (Gaussian blur, 𝜎 = 3.0) images with high levels salt-and-
pepper noise. (a),(d): 80%, 95% salt-and-pepper noise. (b),(e): reconstructions with the
proposed method. (c),(f): reconstructions with TVL1.
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𝑢0 in our algorithm can be set

𝑢0(𝑥) =

{
1 𝑔(𝑥) ∕= 0 or 1,
0 𝑔(𝑥) = 0 or 1.

Figure 3 shows some results by applying the methods in this paper, in
[11] and TVL1 model, which is designed to restore image with impulsive noise
[5, 7, 21]. The images in the first column of Figure 3 are the contaminated
Boat image with Gaussian blur (standard deviation=3.0) and different levels
of salt-and-pepper noise, the densities of salt-and-pepper noise are 20%, 50%,
respectively, and the corresponding restorations with different methods can
be found in the last three columns. The corresponding PSNR values and the
cpu time can be found in Table 2.

We find that our model can still work even though 80 or 95 percent of
the blurred pixels are corrupted by salt-and-pepper noise, because this kind
of noise is easy to detect. The results of restoring blurred image with such
high level noise are illustrated in Figure 4. One can find that the proposed
method gives much better restorations with higher PSNR values, and less
cpu time (see Table 2) than TVL1, especially the levels of noise are high.

Table 3: PSNR (dB) values and CPU time (s) in the experiment 3.

Noise PSNR (dB) CPU time (s)

ratio TVL1 Two-phase proposed TVL1 Two-phase proposed

55% 24.12 25.98 27.13 4.25 184.27 10.83

70% 20.78 23.01 24.72 8.45 211.65 11.10

4.3. Experiment 3, suppressing random-valued noise.

Another common type of impulse noise is random-valued noise, in this
case, the changed pixels in a blurred image are some random numbers with
a uniform distribution in [0, 1].

Recently, In [8, 9], a two-phase method is proposed to deblur image under
impulse noise and it can provide good results. The two-phase method can
be described as minimizing the following functional∫

Ω

𝜒 ⋅ ∣𝑘 ∗ 𝑓 − 𝑔∣+ 𝛽𝑅(𝑓),
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(a) 55% random-
valued noise

(b) TVL1, 𝜇 = 12 (c) Two-phase [9],
𝛽 = 0.01

(d) Proposed

(e) 70% random-
valued noise

(f) TVL1, 𝜇 = 10 (g) Two-phase [9],
𝛽 = 0.02

(h) Proposed

Figure 5: Recovering blurred images with random-valued noise: (a),(e) blurred image with
random-valued noise. (b),(f) restored by TVL1. (c),(g) restored by the two-phase method
[9]. (d),(h) restored by the proposed method.

where 𝛽 > 0 is a parameter, 𝑅(𝑓) is a regularization term, and 𝜒 is a char-
acteristic function which is estimated by median-type filter in the two-phase
method. 𝜒 is determined by formula

𝜒(𝑥) =

{
1, 𝑔(𝑥) is a noise free pixel,
0, 𝑔(𝑥) is a likely noisy pixel.

In general, it is more difficult to detect random-valued noise than salt-and-
pepper noise. As is reported in [8, 9], the two-phase method can not give good
restoration under random-valued noise with density more than 55% since
there is no good median-type detector for random-valued noise when the noise
ratio is high. However, the proposed model can work well in the presence of
random-valued noise with density as high as 75% , because the noise detection
and image restoration are implemented iteratively in the presented algorithm
and the random-valued noise can be better identified. In Figure 5, we show
the restorations with TVL1, the two-phase method [9], and model (2) under
high level random-valued noise. In Figure 5(a), the original image is blurred
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by a Gaussian blur with standard deviation 𝜎 = 3.0, and then is corrupted
by random-valued noise with density 55%. While in Figure 5(e), the image
is contaminated by a Gaussian blur with 𝜎 = 4.0 and the noise ratio is 70%.
The restorations of both cases with three algorithms are illustrated in the
last three columns of Figure 5, respectively. We can see from the figures that
our method is again much better than others. As before, We summarized
the PSNR values and CPU time in Table 3.

(a) Mixed noise (b) Restoration (c) 60% random-
valued noise

(d) Restoration

Figure 6: Recovering space-varying blurred images. (a) and (c) are the blurred images
with Gaussian mixed noise (𝜎2

1 = 10−4, 𝜎2
2 = 2 × 10−2, the mixing ratio is 3:1), random-

valued noise, respectively. (b) and (d) correspond to the restorations with the proposed
method.

4.4. Experiment 4, recovering the images with space-varying blur and mixed
noise.

In this experiment, we apply our algorithm to reconstruct the degraded
images with space-varying blur. A very general model for the blurring of
images is

𝑔(𝑥1, 𝑥2) =

∫ ∫
Ω

𝑘(𝑥1, 𝑥2, 𝑦1, 𝑦2)𝑓(𝑦1, 𝑦2)𝑑𝑦1𝑑𝑦2 + 𝑛(𝑥1, 𝑥2).

We consider the known blur kernel has the expression

𝑘(𝑥1, 𝑥2, 𝑦1, 𝑦2) =

⎧⎨⎩
1

2𝐿(𝑥1,𝑥2)
, 𝑦21 + 𝑦22 ⩽ 𝐿2(𝑥1, 𝑥2)

and 𝑦1𝑠𝑖𝑛𝜃(𝑥1, 𝑥2)− 𝑦2𝑐𝑜𝑠𝜃(𝑥1, 𝑥2) = 0,
0, else,

where
𝐿(𝑥1, 𝑥2) =

9
255

𝑥2 + 6,
𝜃(𝑥1, 𝑥2) =

𝜋
255

𝑥1 − 𝜋
2
.

16



In the experiment, the image size is 256 × 256, while the coordinate has an
origin at the upper left of the image.

Figure 6 illustrates the results of recovering the images with space-varying
blur and Gaussian mixed noise/random-valued noise. One can find that our
method still provides good restorations.

4.5. Experiment 5, Natural images reconstructing.

Figure 7 contains some results by applying our algorithm to real data,
which was taken by surveillance cameras in the railway lines at nightfall.
These images often have low contrast and noise. A result with histogram
equalization is illustrated in Figure 7(b), we can see from the figure that
noise is amplified. Figure 7(c), Figure 7(d) show the results with our method
and ROF model, and one can find that noise is suppressed efficiently in both
method. However, our method provides clearer details than ROF. Here, we
set the blur kernel 𝑘 to the Delta function for both methods.

5. Conclusion and Discussion

In this note, we have proposed a new model to restore image from mixed
noisy data. In our method, the classical cost functionals of image segmen-
tation and image restoration are coupled together by introducing two extra
terms, which are derived from the statistical process. A function 𝑢 is em-
ployed to detect the locations of the possible noisy pixels, and a balance
between denoising and deblurring can be found by updating the introduced
paremeters 𝑧1 and 𝑧2. All of these ensure that our approach has a better
performance than others in removing mixed noise.

We mention that the method developed in this paper may be extended
to blind convolution, inpainting, segmentation. Another possible extension
is that employing some nonsmooth fidelity terms such as 𝐿1-based fidelity
terms in our model. Finally, we have not given the theoretical results of
the proposed model, such as the existence and uniqueness of the regularized
solution. These are future research contents.
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(a) Real data (b) Histogram equalization

(c) Our method + Histogram equalization (d) ROF + Histogram equalization

(e) Zoom in (b) (f) Zoom in (c) (g) Zoom in on (d)

Figure 7: (a) Natural image. (b) result with histogram equalization. (c) reconstructing
with our method, and then with histogram equalization. (d) reconstructing with ROF,
and then with histogram equalization.
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