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Abstract. Non-local dependency is a very important prior for many image

segmentation tasks. Generally, convolutional operations are building blocks

that process one local neighborhood at a time which means the convolutional
neural networks(CNNs) usually do not explicitly make use of the non-local

prior on image segmentation tasks. Though the pooling and dilated convolu-

tion techniques can enlarge the receptive field to use some nonlocal information
during the feature extracting step, there is no nonlocal priori for feature classifi-

cation step in the current CNNs’ architectures. In this paper, we present a non-

local total variation (TV) regularized softmax activation function method for
semantic image segmentation tasks. The proposed method can be integrated

into the architecture of CNNs. To handle the difficulty of back-propagation for

CNNs due to the non-smoothness of nonlocal TV, we develop a primal-dual hy-
brid gradient method to realize the back-propagation of nonlocal TV in CNNs.

Experimental evaluations of the non-local TV regularized softmax layer on a
series of image segmentation datasets showcase its good performance. Many

CNNs can benefit from our proposed method on image segmentation tasks.

1. Introduction. Image segmentation has long been a hot topic and attracted3

hundreds of thousands of researchers from lots of fields all over the world. Gen-4

erally speaking, given an image, image segmentation aims to classify all pixels to5

several classes. In the past few decades, kinds of methods have been proposed for6

image segmentation. Depending on whether there are labels available or not, all7

the methods could be mainly classified into two types, unsupervised methods and8

supervised methods. Given no label prior, unsupervised methods such as thresh-9

olding method [24] , edge based method[7], region based method[1], partial differ-10

ential equation(PDE) and variational based methods[12, 21, 20], graph partitioning11

method [29] and their variations first appear in the last century. These methods12
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usually make use of constraints according to some prior information such as image1

intensity, shape prior. Besides unsupervised methods, when there are annotated2

samples available, supervised methods come into being and learn valid informa-3

tion from training dataset. Discriminative features and context information will be4

extracted followed by a dense pixel-wise classification.5

Total variation(TV) exhibits prominent performance in image restoration prob-6

lems, which is first introduced in computer vision by Rudin, Osher and Fatemi[26].7

It is one of the most popular regularization methods in image processing field due8

to its good performance in handling minimization problems. In the recent decades,9

TV has been explored by thousands of researchers and extended to a series of10

forms for dealing with sorts of other image processing tasks, such as anisotropic11

TV[6], weighted TV[31], fourth-order PDE model(two-step method)[18], higher-12

order TV[5], and non-local TV[8]. An effective framework has also been proposed13

in recent years. After introducing a novel region force term into Potts model,it14

achieves good performance in multi-phase image segmentation and semi-supervised15

data clustering[33] tasks. Their method can be easily applied to high dimensional16

data clustering tasks via graph total variation.17

Convolutional Neural Networks (CNNs)[14, 15] have achieved distinguished per-18

formance in a series of tasks in the last decade. Especially in computer vision19

area, CNNs showcase their prominent abilities in learning discriminative features20

from various large scale datasets. Leading other methods by a large margin, CNNs21

achieve the first place in many kinds of tasks such as image classification, object22

detection and image segmentation. Semantic image segmentation is a dense classifi-23

cation task which aims to classify each pixel to a certain class. It not only segments24

a given image into several regions, but also tells you which label each pixel belongs25

to[4, 28].26

Fully Convolutional Networks (FCNs)[17] was the first successful attempt for se-27

mantic image segmentation task via an end-to-end CNN framework. Noh et al.[22]28

proposed an extension of FCNs. They used a VGG[30] 16-layer network as the29

convolution network, followed by a series of up-pooling and deconvolutional lay-30

ers. Utilizing the spatial dependency between neighbor pixels, Conditional Random31

Fields (CRFs) were employed as a post-processing after CNNs to refine segmenta-32

tion results[16]. CNNs were also introduced to medical image processing fields due33

to its powerful ability. Inspired by FCN, U-net[25] using a symmetric structure34

while adding skip-connections like FCN to concatenate feature maps from differ-35

ent levels together. With abundant features from different levels, U-Net achieved36

very prominent performance and thus has since been applied to kinds of medi-37

cal imaging tasks such as image translation. In recent years, variations of Unet38

come forth. Attention U-Net[23] employs attention gates to help CNN focus on ex-39

tracting discriminative features from foreground. R2U-Net[2] introduces recurrent40

residual blocks to U-Net and achieves better results on several retina blood vessel41

segmentation datasets. Different variations of U-Net continuously improving the42

segmentation performance on kinds of medical image datasets.43

However, convolution operators just can learn features from local context. Long44

range dependency is also important information in semantic image segmentation.45

Dilated convolution operators[35] could capture long range information. It has a46

larger receptive field with same computation and memory costs while also preserv-47

ing resolution. But the dilated convolution would lose some position information48

in image segmentation. What is more, the receptive field of dilated convolution49
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is not continuous and dilated convolution does not work well when facing small1

objects. Capturing multi-scale feature information, well designed Hybrid Dilated2

Convolution(HDC) [32] could eliminate the effect of some disadvantages and im-3

prove segmentation performance. Although HDC can work well when there is big4

enough training corpus, when the training dataset is quite small, HDC can hardly5

showcase its performance. That is why dilated convolution operators seldom appear6

in CNNs for medical image segmentation.7

Given a few training samples, we explore the potential of non-local operators and8

provide a novel way to capture long range information in CNNs. In summary, the9

contributions of this paper are as follows:10

• We introduce graph total variation to softmax activation function, one can11

easily extend this model to other activation functions in CNNs. Some ear-12

lier works have tried to introduce local total variation to softmax activation13

function[10], but it is well known that non-local dependency is an important14

prior for the image segmentation problem.15

• We introduce a primal-dual hybrid gradient method for our proposed regular-16

ized softmax activation function that enables end-to-end training.17

• Experimental results show the good performance of the nonlocal total vari-18

ation. Local total variation regularized softmax activation function could19

produce smoother objects, but it may lose some details such as corners. It20

is numerically verified that nonlocal total variation could eliminate isolated21

regions and preserve object details at the same time.22

The paper is organized as follows. In Section 2, we give brief descriptions to23

related work. Our proposed method is illustrated in Section 3. In this section,24

we apply our proposed method to softmax layer and give the general formulas25

for forward propagation, backward propagation. Some implementation details are26

also illustrated here. The experimental results are described in Section 4, and the27

conclusions follow in Section 528

2. Related Work.29

2.1. Multi-phase Image Segmentation. Let I(x) be an image which is defined30

on a domain Ω ∈ R2, the multi-phase image segmentation task is to classify Ω into31

K partitions, where K is the number of classes. Let {Ωk}Kk=1 be the partitions, we32

have Ω = ∪Kk=1Ωk and Ωk̂∩Ωk = ∅ when k̂ 6= k. Potts model is a general variational33

based image segmentation model for multi-phase image segmentation. It consists34

of two terms, the data fidelity term and regularization term. Generally, it can be35

defined by the following minimization problem:36

min
Ωk

K∑
k=1

∫
Ωk

fk(x)dx+R({Ωk}Kk=1). (1)

The second term in Eq. (1) is a jump penalty which is usually defined as follows:37

R({Ωk}Kk=1) =

K∑
k=1

|∂Ωk|α =

K∑
k=1

∫
∂Ωk

α(x)ds, (2)

where α(x) is an edge detector defined as α(x) = β
1+γ|OIσ|2 . γ and β are manually set38

parameters controlling the property of edge detector. Iσ is the result of convoluting39

the image I(x) with a Gaussian kernel gσ. The jump penalty is a scaled sum of40

boundary total length when α(x) is a constant λ ∈ R.41
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If we define an indicator function φk(x)(k = 1, 2, · · · ,K.) on the k-th sub-domain,1

2

φk(x) =

{
1 x ∈ Ωk
0 otherwise.

(3)

then we have3 ∑K
k=1

∫
∂Ωk

α(x)ds =
∑K
k=1

∫
Ω
α(x)|Oφk(x)|dx, (4)

where φ = (φ1, · · · , φK). The segmentation condition becomes a relaxed one4

S = {φ(x) :

K∑
k=1

φk(x) = 1, 0 ≤ φk(x) ≤ 1}. (5)

Corresponding to the binary segmentation constraint on φk in (1), one can get5

the following convex programming problem which is a dual of a min-cut problem:6

min
φ∈S

K∑
k=1

∫
Ω

fk(x)φk(x)dx+

K∑
k=1

∫
Ω

α(x)|Oφk(x)|dx. (6)

2.2. Graph Model for Data Clustering. Graph model is a useful tool if we7

want to utilize pairwise relations between pixels. A undirected weighted graph8

G = (V,E, w) is constructed by vertex set V, edge set E and a weight function9

w : E → R+ which is defined on the edges. In the image segmentation task, each10

image could be seen as a graph, each pixel in the image is a vertex. For xi, xj ∈ V,11

wij = w(xi, xj) measures the similarity between two vertexes.12

Since an image often has at least dozens of thousands of pixels, the computation13

and memory cost will be extremely huge if we use complete graph. Therefore, we14

assume that each pixel is connected to only a portion of other pixels. Then we get15

a sparse affinity matrix W . There are several methods to measure the similarity16

between two pixels. Given a distance metric dist(·) which measures the distance of17

the feature vector of two pixels xi and xj , the radial basis function (RBF) [27] is18

defined as:19

w(xi, xj) = exp
(
−dist(xi,xj)2

2ε

)
. (7)

If we replace the constant 2ε with the product of local variances σ(xi)σ(xj), here20

comes the Zelnik-Manor and Perona function (ZMP) [36]:21

w(xi, xj) = exp
(
−dist(xi,xj)2
σ(xi)σ(xj)

)
. (8)

The cosine similar function is also widely used to measure the similarity between22

two non-zero vectors. It is defined as:23

w(xi, xj) = cos(xi, xj) =
<xi,xj>
|xi||xj | , (9)

In the fully connected pairwise CRF model [13], the weight function is often24

defined by pairwise potentials as25

wp(xi, xj) = µ(xi, xj)
∑M
m=1 λm exp(− 1

2 (fi,fj)
TΛm(fi,fj)), (10)

where fi and fj are feature vectors for pixels xi, xj , λm is a coefficient to control26

the impact of each kernel, and µ represents the label compatibility function. Λm is27

a symmetric, positive-definite precision matrix.28
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Let µ(xi, xj) = 1 if xi 6= xj and µ(xi, xj) = 0 otherwise, we use RGB color1

vectors Ii, Ij and spatial positions pi, pj as feature vectors. Given two different2

pixels, the weight function in Eq. (10) can be rewritten as:3

w(xi, xj) = λ1 exp
(
− ||pi−pj ||

2

2σα
− ||Ii−Ij ||

2

2σβ

)
+ λ2 exp

(
− ||pi−pj ||

2

2σγ

)
, (11)

where σα, σβσγ are parameters controlling the scale of Gaussian kernels. The first4

term depends on both pixel colors and positions. Pixels with small differences in5

positions and colors are likely to have the same label. The second term only takes6

into account the spatial correlation, isolated points and regions will be removed.7

2.3. Graph Operators. After introducing the weight functions in graph, some8

graph operators will be given in the following. One important operator is gradient9

operator. Given u ∈ L2(V) defined on the vertex set, the gradient operator10

Ow : L2(V)→ L2(V× V) (12)

is defined by11

(Owu)(xi, xj) = w(xi, xj)(u(xj)− u(xi)). (13)

So Owu is a function in L2(V × V). Since we assume each pixel is only connected12

to a small potion of other pixels, we get a sparse graph G and each xi has at most13

d neighbors. Then (Owu)(xi, xj) is a sparse vector14

(Owu)(xi, xj) = (w(xi, xj)(u(xj)− u(xi)))xj∈N (xi) (14)

with at most d non-zeros.15

Correspondingly, the divergence operator16

divw : L2(V× V)→ L2(V) (15)

is given by17

(divwv)(xi) :=
∑
xj∈N w(xi, xj)(v(xi, xj)− v(xj , xi)), (16)

where v ∈ L2(V× V),.18

2.4. Discrete Potts Model. Given a graph G = (V,E, w), we want to classify19

the vertexes V into K partitions, denoted by V1, · · · ,VK . Then the corresponding20

indicator function φk(xi) for the k-th class is defined as:21

φk(xi) =

{
1 if xi ∈ Vk
0 otherwise.

(17)

The discrete counterpart of the Potts model defined in Eq. (6) is given by :22

min
φ∈S

K∑
k=1

∑
xi∈V

fk(xi)φk(xi) +

K∑
k=1

NLTVα(φk), (18)

where fk(·) is a region force function and NLTVα(φk) is the α weighted non-local23

total variation. As the dual norm of `1-norm is `∞-norm, NLTVα(φk) has the24

following form:25

NLTVα(φk) = max
||qk||∞≤α

< Owφk, qk >

= max
||−qk||∞≤α

− < φk, divwqk >

= max
||qk||∞≤α

∑
xi∈V φk(xi)(divwqk)(xi),

(19)
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where < ·, · > is the standard inner product of two vectors, qk is the dual variable1

of φk, Ow and divw are non-local gradient and divergence operators defined in Eq.2

(14) and Eq. (16), respectively.3

3. Proposed Method. Usually, a softmax layer is employed as the last layer of4

a neural network, converting an input feature vector into a probability distribution5

vector. The sum of elements in the probability vector is 1.6

3.1. Softmax for CNN Segmentation Task. Given a vector o = (o1, o2, · · · , oK) ∈7

RK , the softmax activation function S : RK → RK is given by:8

S(ok) = eok∑K
k̂=1

e
o
k̂
, k = 1, · · · ,K. (20)

Given an image with size N = N1 × N2 and N1, N2 is the height and width. If9

we want to segment the image into K classes using CNN, here comes the following10

minimization problem:11

min
A∈S

{∑N
i=1

∑K
k=1−aik · oik + aik · log(aik)

}
, (21)

where A = (aik) ∈ RN×K is the activation function, S is the soft segmentation12

condition defined in (5), and o = (oik) ∈ RN×K is the feature map taken as input.13

Eq. (21) could be rewritten as:14

min
A∈S

{∑K
k=1− < Ak,ok > + < Ak, logAk >

}
, (22)

where Ak ∈ RN is the k-th column of A, ok ∈ RN is the k-th column of o. Solving15

the minimization problem in Eq. (22), the minimizer is16

A∗ik = exp(oik)∑K
k̂=1

exp(oik̂)
, i = 1, 2, · · ·N, k = 1, · · · ,K. (23)

This is just the standard softmax activation function and we denote it as:17

A∗ = S(o). (24)

3.2. Proposed Non-local TV Regularized Softmax Function. Now we re-18

place the edge force item in Eq. (18) with the function
∑K
k=1− < Ak,ok > + <19

Ak, logAk > which is defined in Eq. (22) and regularize the prediction result by20

non-local total variation. We set the edge detector α(x) as a constant parameter λ,21

the regularized Softmax function is defined as:22

min
A∈S

{∑K
k=1− < Ak,ok > + < Ak, logAk > +λNLTV (Ak)

}
. (25)

The variational formulation of non-local total variation is given by23

NLTV (Ak) = max
ηk∈RN×N , ||ηk||∞≤1

< Ak, divwηk >, (26)

where ηk ∈ RN×N is the dual variable of Ak . The minimization problem Eq. (25)24

can be reformulated as a saddle-point problem:25

min
A∈S

max
||ηk||∞≤λ

{∑K
k=1− < Ak,ok > + < Ak, logAk > + < Ak, divwηk >

}
. (27)
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The above minimization problem can be solved by primal-dual hybrid gradient1

method updating dual variables ηk and primal variables Ak alternatively. The2

iteration is given by3  ηtk = Π||ηk||∞≤λ(ηt−1
k − τOwAt−1

k ), k = 1, · · · ,K

Atk = S(ok − divwηtk),
(28)

where t is the iteration number.4

We also record the primal energy and dual energy during the iteration to monitor5

the convergence of the algorithm. The primal energy EP (A) is as follows:6

EP (A) =
∑K
k=1− < Ak,ok > + < Ak, logAk > +λNLTV (Ak). (29)

The dual energy ED(η) is as follows:7

ED(η) =
∑K
k=1− < Ak,ok > + < Ak, logAk > + < Ak, divw(ηk) >, (30)

where Ak = S(ok − divw(ηk)).8

There are two stopping criteria, a maximum of 1500 iterations is reached or the9

relative absolute duality gap is smaller than a threshold e, i.e.:10

|EP−ED|
|EP | ≤ e, (31)

where e = 10−5 in our experiments.11

Algorithm 1 Primal-Dual Hybrid Gradient Decent Method

Require: the output of last layer o, initialize η0 = 0,A0 = S(o).
Ensure: A

1: function Non-local Regularized Softmax
2: τ = 0.03, λ = 3,
3: for t = 1, ..., T + 1 until convergence do
4: calculate OwA,
5: for k = 1, ...,K do
6: ηtk = Π||ηk||∞≤λ(ηt−1

k − τOwAt−1
k ), k = 1, · · · ,K

7: end for
8: calculate divwη

t,
9: for k = 1, ...,K do

10: calculate Atk = S(ok − divwηtk),
11: end for
12: end for return A
13: end function

We iteratively perform Eq. (28), when it converges, we get the optimum of Eq.12

(27), A∗ = lim
t→+∞

At,η∗ = lim
t→+∞

ηt. Then we have the regularized softmax13

A∗ = S(o− divw(η∗)), η∗ = (η∗1 , η
∗
2 , · · · , η∗K). (32)

Replacing softmax with regularized softmax, we have regularized A∗ and14

A∗ik =
eoik−divwη

∗
ik∑K

k̂=1 e
oik̂−divwη

∗
ik̂

. (33)
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In our numerical experiments, we set τ = 0.03 and λ = 3. Generally, we initially1

select a large λ and a small step size τ to perform the algorithm. Since the pa-2

rameters λ and τ are image dependent, we iteratively finetune the parameters and3

finally select a best set of them. It is summarized as Algorithm 1.4

Noticing that the second term in Eq. (25) could be seen as a negative entropy5

term which can enforce A to be smooth. If we add a control parameter ε > 0 to it,6

Eq. (25) becomes7

min
A∈S

{∑K
k=1− < Ak,ok > +ε < Ak, logAk > +λNLTV (Ak)

}
. (34)

The corresponding minimizer is8

A∗ = S
(
o− divwη∗

ε

)
, η∗ = (η∗1 , η

∗
2 , · · · , η∗K). (35)

We can see that when adding a control parameter ε, it is equivalent to rescaling the9

output of regularized softmax by a factor 1
ε . In all our experiments, we set ε = 0.5.10

3.3. General Convolutional Neural Network for Semantic Image Segmen-11

tation. A general convolution neural network consists sets of convolution layers and12

activation layers. Given an input v, the convolution layer can be formulated as:13

T (v) =Wv + b, (36)

where W is a linear operator such as convolution or deconvolution, b is a bias.14

The activation function takes o as input and outputs v, it can be represented by15

16

v = A(o), (37)

where A can be ReLU, softmax, sigmoid, sampling and other activation functions.17

Given an image as input, a general convolution neural network with L layers can18

be described by recursive connections as follows:19 
v0 = v,
ol = TΘl−1(vl−1),
vl = Al(ol), l = 1, . . . , L,

(38)

where Θ is the parameter set, and we have Θ = {Θl = (W l, bl)| l = 0, . . . , L− 1}.20

Given a training dataset and a loss function L, the CNN learns a parameter set21

Θ by iteratively training such that a loss functional L(NΘ(X), Y ) is minimized by22

Θ. The training dataset consists of M images X = (v1, v2, . . . , vM ) ∈ RM×N1N223

and their ground truth segmentation Y = stack(y1, y2, . . . , yM ) ∈ {0, 1}M×K×N1N224

with ym ∈ {0, 1}K×N1N2 .25

A widely used loss function in many tasks is cross entropy which is given by26

L(NΘ(X), Y ) = − 1

M

M∑
m=1

< ym, logNΘ(xm) > . (39)

The algorithm of learning is a gradient descent method:27

(Θl)step = (Θl)step−1 − τΘ
∂L
∂Θl

∣∣∣
Θl=(Θl)step−1

, (40)

where step = 1, 2, . . . is the training iteration number and τΘ is a hyper parameter28

controlling learning rate. ∂L
∂Θl can be calculated by back-propagation technique29
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using chain rule. Let ∆l = ∂L
∂ol

, then the back-propagation scheme is in the following1

2 
∆l = ∂vl

∂ol
· ∂o

l+1

∂vl
· ∂L
∂ol+1

= ∂Al
∂ol
· ∂TΘl
∂vl
·∆l+1,

∂L
∂Θl = ∂ol+1

∂Θl · ∂L
∂ol+1 =

∂T
Θl

∂Θl ·∆l+1,

(41)

where l = 0, 1, . . . , L− 1.3

3.4. Back-propagation of Regularized Softmax. During the forward propa-4

gation stage, we obtain a regularized o by performing Algorithm 1 when given the5

output of last layer o, η0 = 0,A = S(o) as the initial values. The gradient of loss L6

with respect to o should be computed in the back-propagation stage. The for loop7

in Algorithm 1 is performed T + 1 steps during each forward propagation iteration,8

the gradients are computed in an inverse order.9

Since ηt only contributes to computing At when t = 1, . . . , T + 1, the gradient of10

L with respect to ηt is given by11

∂L
∂ηt = ∂L

∂At ·
∂At
∂ηt , t = 1, . . . , T + 1. (42)

Eq. (28) could be reformulated as :12  ξtk = ξt−1
k − τOS(ok − divwηt−1

k ),
ηtk = Π||ξk||∞≤λ(ξtk),
Atk = S (ok − divwηtk) .

(43)

ξt contributes to computing both ηt and ξt+1 when t = 1, . . . , T . However, ξT+1
13

contributes to compute ηT+1 only. Then the gradient of L with respect to ξt is14

given by15

∂L
∂ξt

=

{
∂L
∂ηt ·

∂ηt

∂ξt , t = T + 1
∂L
∂ηt ·

∂ηt

∂ξt + ∂L
∂ξt+1 , t = 1, . . . , T.

(44)

At is the input to compute ξt+1 when t = 0, . . . , T , then the gradient of L with16

respect to At is given by17

∂L
∂At = ∂L

∂ξt+1 · ∂ξ
t+1

∂At , t = 0, . . . , T. (45)

o contributes to computing each At when t = 0, . . . , T + 1. A0 is initialized with18

S(o), finally the gradient of L with respect to o is given by19

∂L
∂o = ∂L

∂A0 · S
′
(o) +

∑T+1
t=1

∂L
∂At · S

′
(o− divw(ηt)). (46)

∂L
∂At+1 is given by the loss layer in the backward propagation stage, so we can20

successively get ∂L
∂ηT+1 ,

∂L
∂ξT+1 ,

∂L
∂AT , . . . ,

∂L
∂η1 ,

∂L
∂ξ1 ,

∂L
∂A0 by Eq. (42), Eq. (44) and Eq.21

(45).22

At last, ∂L∂o is given by Eq. (46).23

3.5. Implementation Details. Since the total variation in this paper is defined24

on graph, we treat each input image as a graph G = (V,E, w) and each pixel is a25

vertex in V. One essential problem is how to define a proper edge set E and weights26

of edges. Assuming that each pixel is connected to at most d neighbors and these27

neighbors are chosen according to distances between the feature vectors of pixels.28

Geometrical four nearest neighbors may not be among these d neighbors. When29

each pixel is connected to every other pixel, G is a fully connected graph. When30

each pixel is connected to only a few neighbor pixels, G is a sparse graph, then31

OwAk and divwηk are both sparse. We tried different d and found that a small d32
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could work well. We will show some experimental results of different d in Section1

4.2

When we introduce regularized softmax to CNN, we need to keep each Atk, ηtk3

and some intermediate variables in graphics memory during forward propagation4

stage as they will be used to compute gradients in the backward propagation stage.5

Therefore, if d or t is too big, numerous computation and memory resources will be6

required. We use a small t and d in our experimental part, but there is still obvious7

regularization effect.8

(a) image (b) d=4,constant w (c) d=4

(d) d=10 (e) d=20 (f) d=40

Figure 1. An example of segmentation results by applying the
algorithm of [34] and our proposed method on an image from
BSD500. When using 4 geometrical nearest neighbors, the weights
are set to 1. The segmentation is quite smooth and missing de-
tails (Figure 1(b)). When we use Eq. (11) to compute W, the
segmentation results are with more details and better accuracy.
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The limited GPU memory can only store variables of no more than dozens of1

steps, we only perform Eq. (28) one or a few steps each iteration in the training stage2

which indeed brings regularization effect. What’s more, even though the primal3

energy curve continuously decreases in hundreds of steps, the segmentation results4

change slightly after dozens of steps. It’s a trade-off between accuracy, memory5

resources and efficiency. We set the initialization ξ0 and η0 to 0, respectively. Then6

the first iteration is7  ξ1
k = −τOS(ok),
η1
k = Π||ξk||∞≤λ(ξ1

k),
A1
k = S(ok − divwη1

k)
(47)

According to the back-propagation procedure described in Subsection 3.4, the8

gradient of L with respect to o could be computed easily.9

4. Experimental Results. In our experiments, we rescale all the intensity of the10

images to [0,1]. First of all, we try different d and select a proper one by comparing11

the segmentation results from a toy example.12

In [34] several images from BSD500 [19] were selected to test their algorithm.13

We use the same image for comparison. In their experiments, each pixel has 414

neighbors and the weights of edges are set to 1. In this experiments, we use Eq.15

(11) as our distance metric and select the nearest 4,10,20,40 neighbors to perform16

our algorithm, respectively.17

The parameters in Eq. (11) are set as follows, λ1 = 1, λ2 = 0.5, σα = 40, σβ =18

13/255, σγ = 3.19

From Figure 1, we can see that, when using 4 geometrical neighbors with constant20

weights, the segmentation result is properly regularized and smoothed. There are21

not so many details. However, when using weights computed by Eq. (11), more22

details are preserved. When there is a few neighbors, the segmentation results23

appears to be a little noisy. There are many obvious isolated small regions on24

the vegetables and planks. The segmentation results appear to be smoother with25

increased number of neighbors. Nevertheless, a large number of neighbors need26

extra computation memory resources. In our experiments, we use d = 20 for WBC27

Dataset[37], d = 10 for CamVid Dataset[11].28

We apply our proposed method to Unet, Attention Unet[23] and Segnet [3] us-29

ing Caffe implementation. Unet, Unet with local regularization (RUnet)[10], Unet30

with non-local regularization (NLUnet), Attention Unet(AUnet), Attention Unet31

with local regularization(RAUnet), and Attention Unet with non-local regulariza-32

tion(NLAUnet) are tested on White Blood Cell Dataset [37]. Segnet, Segnet with lo-33

cal regularization(RSegnet)[10] and Segnet with non-local regularization(NLSegnet)34

are conducted on CamVid Dataset [11].35

For each network, we use SGD solver with momentum of 0.9. We set the learning36

rates to 0.0001 for Unet and its variations, the weights of Unet, RUnet, AUnet and37

ARUnet is randomly initialized. The weights of NLUnet and NLAUnet are finetuned38

from Unet and AUnet, respectively. We set the learning rates to 0.001 for Segnet,39

RSegnet and NLSegnet. Like the author of Segnet, we also initialize the weights of40

Segnet and RSegnet from the VGG model trained on ImageNet [9]. The weights of41

NLSegnet is finetuned from Segnet.42

In data preparation stage, we compute the affinity matrix for each image. Since43

the affinity matrix is sparse, we use two matrices to represent it. One is W = (wi),44

it keeps the edge weights computed by Eq. (11). The other is Widx = (widxi), it45
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keeps the indexes of nearest neighbors of the i-th pixel. We save the two matrices1

as local files so that we can load them during training and testing stages. Global2

pixel accuracy and mean intersection over union (mIoU) are two common metrics3

in image segmentation tasks, we also use them as our quantitative measures.4

When evaluating a standard machine learning model, the prediction results are5

usually classified into four categories: true positives(TP), false positives(FP), true6

negatives(TN), and false negatives(FN). Global accuracy gives percent of pixels in7

all images which were correctly classified. The global accuracy is defined as8

Accuracy =
TP + FP

TP + FP + TN + FN
. (48)

The Intersection over Union (IoU) metric, also called the Jaccard index, calcu-9

lates the percent overlap between the ground truth mask and the prediction output.10

The IoU metric is defined by11

IoU =
TP

TP + FP + FN
. (49)

For multi-class segmentation tasks, the mean IoU(mIoU) is the mean value of the12

IoU of each class.13

The RE score defined in the article[10] measures the regularization effect of seg-14

mentation result. Segmentation results with lower RE scores have smoother edges15

and less isolated regions.16

4.1. WBC Dataset. There are two sub-datasets in White Blood Cell Image Dataset17

[37]. The image size in Dataset 1 is 120x120. It is too small for a CNN-based seg-18

mentation task. Dataset 2 consists of one hundred 300x300 color images. There19

is one white blood cell in the center of each image. Each image consists three20

classes, nucleus, cell sap and background. Comparing to Dataset 1, Dataset 2 is21

more suitable for a segmentation task thus selected in our experiments.22

(a) Convergence of RSoftmax (b) Convergence of NLSoftmax

Figure 2. Given an input O, λ = 3 and τ = 0.03,we perform al-
gorithms for regularized softmax with local operator and non-local
operator, respectively. Figure 2(a) is the convergence of softmax
with local operate, the primal energy curve has a peak during the
iteration. While in Figure 2(b), the energy curve drops rapidly at
first and finally converges smoothly.
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cell
image

ground
truth

Unet
[25]

RUnet
[10]

NLUnet

Figure 3. Segmentation results predicted by Unet, RUnet and
NLUnet on images from testing dataset of White Blood Cell. From
row 2 to row 5, The black regions are background, the gray regions
are cell sap, the white regions are nucleus.

Table 1. Results of Unet, RUnet and NLUnet trained on WBC Dataset.

Method Unet [25] RUnet [10] NLUnet

mIoU 89.79 90.15 90.80

Accuracy 97.04 97.13 97.42

RE 1.82 1.30 1.59

The training dataset contains 60 image randomly picked from WBC Datset2.1

The others are used for testing. We finetune Unet with non-local softmax(NLUnet)2

from Unet for 10k iterations. The CNN weights of Unet and RUnet are randomly3

initialized and they are trained for 20k iterations. Since the non-local softmax will4

take up some graphics memory for computing OwA and divwη, the mini-batch size5

is three.6

Since the affinity matrix W measures the similarity between pixels, if the pixel7

color value is perturbed, W will become inaccurate and wrong pixels will be selected8

as nearest neighbors. In our experiments, all the image used in training and testing9

stages are clean image, no noise is added to them. From Table 1 we can see that10
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both mIoU and accuracy of NLUnet are improved compared to RUnet on testing1

dataset. The RE score of NLUnet is higher that RUnet, but less than Unet. This is2

because NLUnet could eliminate some isolated regions and produce smooth edges.3

Nevertheless, NLUnet can also preserve some details.4

We show the convergence of RSoftmax and NLSoftmax in Figure 2(a) and Figure5

2(b), respectively. The primal energy and dual energy of NLSoftmax are computed6

by Eq. (29) and Eq. (30), respectively. The primal energy and dual energy of7

RSoftmax are computed by the same equations after replacing the non-local oper-8

ators Ow, divw with local operators O, div. In Figure 2, the y-axis represents the9

energy value and the x-axis represents iteration number. Since we use a very small10

step size τ = 0.03, the energy values of primal and dual functions converges with11

1000 iterations. We can also use a larger step size to make them converges faster.12

(a) Enlarged View (b) Ground Truth (c) Unet [25]

(d) RUnet [10] (e) NLUnet

Figure 4. An enlarged view of segmentation results from Figure 3.

In Figure 3, we can see that NLUnet provides more details comparing to RUnet.13

In Figure 3 column 1, the segmentation result of Unet misses some nucleus RUnet14

provides better segmentation results. The nucleus regions are closer to ground15

truth, but still some details are missed. NLUnet achieves the best segmentation16

result. There are less isolated regions and the edges are smoother comparing to17

Unet. Meanwhile, details are well preserved. Figure 4 is an enlarged view, we18

can see the segmentation details clearly. In Figure 3 column 2, we can see that a19

part of cell sap(grey region) is missing on the right hand side in both Unet and20

RUnet, while the segmentation result of NLUnet is relatively complete. In Figure21
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cell
image

ground
truth

AUnet
[23]

RAUnet
[10]

NLAUnet

Figure 5. Segmentation results predicted by AUnet, RAUnet and
NLAUnet on images from testing dataset of White Blood Cell.
From row 2 to row 5, The black regions are background, the gray
regions are cell sap, the white regions are nucleus.

3 column 3, there are two thin lines connecting different parts of nucleus(while1

region), Unet misses one of them and RUnet misses both of them. Surprisingly,2

NLUnet successfully preserves those details. If we take a closer look at the curves3

of nucleus and cell sap, we can see that the result of Unet is quite rough, RUnet4

gives much smoother edges. The edges provided by NLUnet are smoother than5

those of Unet, and more closer to ground truth comparing to RUnet. In Figure 36

column 4, we can see that the segmentation result of Unet is fragmented. RUnet7

gives a smooth segmentation result, but the nucleus is smaller comparing to ground8

truth due to its regularization effect. While NLUnet give relatively good result and9

the segmentation is closer to ground truth.10

Since some variations of Unet appear in recent years, here we also use Attention11

Unet(AUnet)[23] to further evaluate the performance of our method. Comparing12

with original Unet, the Attention Unet introduces attention gates to help the net-13

work focus its attention on foreground. We simply add attention gates to Unet14

as the author do and use our own Caffe implementation. Excepting the attention15

gates, the other configurations are the same with Unet.16

From Table 2 we can see that the attention gates help improve the performance17

of Unet. Nevertheless, the Attention Unet with local regularized softmax activation18
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Table 2. Results of AUnet, RAUnet and NLAUnet trained on
WBC Dataset.

Method AUnet [23] RAUnet [10] NLAUnet

mIoU 90.75 91.01 91.69

Accuracy 97.35 97.40 97.57

RE 1.43 1.41 1.43

function(RAUnet) and the Attention Unet with non-local regularized softmax acti-1

vation function(NLAUnet) further improve the mIoU and accuracy. Our proposed2

method achieves the best result.3

In Figure 5, we can see that the segmentations of nucleus(white regions) are4

very close to ground truth. Comparing with Unet in Figure 3, AUnet gives more5

complete nucleus. Inside the cell sap, there are some bubbles which looks very close6

to background. This may distract the attention gate such that some cell sap pixels7

are classified as background wrongly.8

road
scene
image

ground
truth

Segnet
[3]

RSegnet
[10]

NLSegnet

Figure 6. Segmentation results predicted by Segnet, RSegnet and
NLSegnet trained on CamVid Dataset.

4.2. CamVid Dataset. CamVid Dataset [11] consists of a sequence of road scene9

images with size 360x480 collected by driving a car in the city of Cambridge. There10

are 367 images in the training dataset and 233 images in the testing dataset. This11

dataset contains 11 classes and pixels are ignored both in training stage and testing12
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stage if they don’t belong to these 11 classes. The authors of Segnet choose this1

data as their benchmark dataset.2

(a) Enlarged View

(b) Ground Truth (c) Segnet [3] (d) RSegnet [10]

(e) NLSegnet

Figure 7. An enlarged view of segmentation results from Figure
6 column 2.

We apply our non-local regularized softmax layer to Segnet, other configurations3

remain the same. The initial weights of Segnet are finetuned from the VGG model4

trained on ImageNet, its mini-batch size is four. The CNN weights of NLSegnet is5

initialized from Segnet and finetuned for 3k iteration with learning rates fixed to6

0.01. The mini-batch size of NLSegnet is 1.7

From Table 3 we can see that both mIoU and accuracy of NLSegnet are improved8

compared to RSegnet on testing dataset. The RE score of NLSegnet is higher that9
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(a) Enlarged View (b) Ground Truth (c) Segnet [3]

(d) RSegnet [10] (e) NLSegnet

Figure 8. An enlarged view of segmentation results from Figure
6 column 1.

Table 3. Results of Segnet, RSegnet, NLSegnet trained on
CamVid Dataset.

Method Segnet [3] RSegnet[10] NLSegnet

mIoU 57.35 57.79 59.84

Accuracy 87.74 88.01 88.59

RE 4.10 2.43 3.40

RSegnet, but less than Segnet. The result is very similar to that of WBC dataset.1

But it is important to note that the mIoU is significantly improved from 57.79 to2

59.84 by NLSegnet. Since mIoU measures the mean intersection over union of overall3

classes, the main gain in mIoU comes from classes which have small proportion4

pixels, such as pole and traffic sign. As non-local softmax could preserve more5

details, this can greatly benefit these minor classes.6

In Figure 6, we can find that NLSegnet preserves many details such as tree7

branch, pole and roof top. In Figure 6 column, many isolated points and regions8

are removed in RSegnet and NLSegnet, there is a signal sign which is in pink color9

on the left hand side. The signal sign has a square shape which is well preserved10

by NLSegnet. Distinct details could be found in the enlarged view in Figure 8.11

However, the signal sign is distorted and becomes irregular in the segmentation12

results in Segnet and RSegnet. In Figure 6 column 2, the roof top on the left hand13

side is well preserved by NLSegnet, the segmentation result is nearly the same with14

ground truth. More details could be found in Figure 7. The segmentation result15

of Segnet is very coarse, whereas RSegnet gives smooth edges but some details are16

missed.17
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5. Conclusions and Future Work. Even though regularized softmax with local1

operators could eliminate scattered points, tiny regions and give smooth edges, some2

details are often missed. Inspired by regularized softmax with local operator, we3

successfully apply non-local operator to regularized softmax. After observing the4

experimental results on WBC Datset and CamVid Dataset, our proposed method5

obviously helps improve the performance of Unet, Attention Unet and Segnet. The6

proposed method not only inherits the regularization property from regularized7

softmax, but also showcases its prominent performance by preserving many more8

details. Since our method is a variation of softmax activation function, it is appli-9

cable to all networks with softmax. Especially, it can showcase its performance on10

small datasets with simple network structures. Now the parameters in computing11

the pairwise potential Eq. (11) is manually tuned. In the future, we will find a way12

to generate the affinity matrix W online efficiently and make the parameters in Eq.13

(11) trainable.14
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