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ABSTRACT. Non-local dependency is a very important prior for many image
segmentation tasks. Generally, convolutional operations are building blocks
that process one local neighborhood at a time which means the convolutional
neural networks(CNNs) usually do not explicitly make use of the non-local
prior on image segmentation tasks. Though the pooling and dilated convolu-
tion techniques can enlarge the receptive field to use some nonlocal information
during the feature extracting step, there is no nonlocal priori for feature classifi-
cation step in the current CNNs’ architectures. In this paper, we present a non-
local total variation (TV) regularized softmax activation function method for
semantic image segmentation tasks. The proposed method can be integrated
into the architecture of CNNs. To handle the difficulty of back-propagation for
CNNs due to the non-smoothness of nonlocal TV, we develop a primal-dual hy-
brid gradient method to realize the back-propagation of nonlocal TV in CNNs.
Experimental evaluations of the non-local TV regularized softmax layer on a
series of image segmentation datasets showcase its good performance. Many
CNNs can benefit from our proposed method on image segmentation tasks.

1. Introduction. Image segmentation has long been a hot topic and attracted
hundreds of thousands of researchers from lots of fields all over the world. Gen-
erally speaking, given an image, image segmentation aims to classify all pixels to
several classes. In the past few decades, kinds of methods have been proposed for
image segmentation. Depending on whether there are labels available or not, all
the methods could be mainly classified into two types, unsupervised methods and
supervised methods. Given no label prior, unsupervised methods such as thresh-
olding method [24] , edge based method[7], region based method[l], partial differ-
ential equation(PDE) and variational based methods[12, 21, 20], graph partitioning

method [29] and their variations first appear in the last century. These methods
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usually make use of constraints according to some prior information such as image
intensity, shape prior. Besides unsupervised methods, when there are annotated
samples available, supervised methods come into being and learn valid informa-
tion from training dataset. Discriminative features and context information will be
extracted followed by a dense pixel-wise classification.

Total variation(TV) exhibits prominent performance in image restoration prob-
lems, which is first introduced in computer vision by Rudin, Osher and Fatemi[26].
It is one of the most popular regularization methods in image processing field due
to its good performance in handling minimization problems. In the recent decades,
TV has been explored by thousands of researchers and extended to a series of
forms for dealing with sorts of other image processing tasks, such as anisotropic
TVI[6], weighted TV[31], fourth-order PDE model(two-step method)[18], higher-
order TV[5], and non-local TV[8]. An effective framework has also been proposed
in recent years. After introducing a novel region force term into Potts model,it
achieves good performance in multi-phase image segmentation and semi-supervised
data clustering[33] tasks. Their method can be easily applied to high dimensional
data clustering tasks via graph total variation.

Convolutional Neural Networks (CNNs)[14, 15] have achieved distinguished per-
formance in a series of tasks in the last decade. Especially in computer vision
area, CNNs showcase their prominent abilities in learning discriminative features
from various large scale datasets. Leading other methods by a large margin, CNNs
achieve the first place in many kinds of tasks such as image classification, object
detection and image segmentation. Semantic image segmentation is a dense classifi-
cation task which aims to classify each pixel to a certain class. It not only segments
a given image into several regions, but also tells you which label each pixel belongs
to[4, 28].

Fully Convolutional Networks (FCNs)[17] was the first successful attempt for se-
mantic image segmentation task via an end-to-end CNN framework. Noh et al.[22]
proposed an extension of FCNs. They used a VGG[30] 16-layer network as the
convolution network, followed by a series of up-pooling and deconvolutional lay-
ers. Utilizing the spatial dependency between neighbor pixels, Conditional Random
Fields (CRFs) were employed as a post-processing after CNNs to refine segmenta-
tion results[16]. CNNs were also introduced to medical image processing fields due
to its powerful ability. Inspired by FCN, U-net[25] using a symmetric structure
while adding skip-connections like FCN to concatenate feature maps from differ-
ent levels together. With abundant features from different levels, U-Net achieved
very prominent performance and thus has since been applied to kinds of medi-
cal imaging tasks such as image translation. In recent years, variations of Unet
come forth. Attention U-Net[23] employs attention gates to help CNN focus on ex-
tracting discriminative features from foreground. R2U-Net[2] introduces recurrent
residual blocks to U-Net and achieves better results on several retina blood vessel
segmentation datasets. Different variations of U-Net continuously improving the
segmentation performance on kinds of medical image datasets.

However, convolution operators just can learn features from local context. Long
range dependency is also important information in semantic image segmentation.
Dilated convolution operators[35] could capture long range information. It has a
larger receptive field with same computation and memory costs while also preserv-
ing resolution. But the dilated convolution would lose some position information
in image segmentation. What is more, the receptive field of dilated convolution
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NONLOCAL REGULARIZED CNN FOR IMAGE SEGMENTATION 3

is not continuous and dilated convolution does not work well when facing small
objects. Capturing multi-scale feature information, well designed Hybrid Dilated
Convolution(HDC) [32] could eliminate the effect of some disadvantages and im-
prove segmentation performance. Although HDC can work well when there is big
enough training corpus, when the training dataset is quite small, HDC can hardly
showcase its performance. That is why dilated convolution operators seldom appear
in CNNs for medical image segmentation.

Given a few training samples, we explore the potential of non-local operators and
provide a novel way to capture long range information in CNNs. In summary, the
contributions of this paper are as follows:

e We introduce graph total variation to softmax activation function, one can
easily extend this model to other activation functions in CNNs. Some ear-
lier works have tried to introduce local total variation to softmax activation
function[10], but it is well known that non-local dependency is an important
prior for the image segmentation problem.

e We introduce a primal-dual hybrid gradient method for our proposed regular-
ized softmax activation function that enables end-to-end training.

e Experimental results show the good performance of the nonlocal total vari-
ation. Local total variation regularized softmax activation function could
produce smoother objects, but it may lose some details such as corners. It
is numerically verified that nonlocal total variation could eliminate isolated
regions and preserve object details at the same time.

The paper is organized as follows. In Section 2, we give brief descriptions to
related work. Our proposed method is illustrated in Section 3. In this section,
we apply our proposed method to softmax layer and give the general formulas
for forward propagation, backward propagation. Some implementation details are
also illustrated here. The experimental results are described in Section 4, and the
conclusions follow in Section 5

2. Related Work.

2.1. Multi-phase Image Segmentation. Let I(z) be an image which is defined
on a domain Q € R?, the multi-phase image segmentation task is to classify Q into
K partitions, where K is the number of classes. Let {€2;}5_, be the partitions, we
have Q = UX_ O and Q;NQy, = () when k # k. Potts model is a general variational
based image segmentation model for multi-phase image segmentation. It consists
of two terms, the data fidelity term and regularization term. Generally, it can be
defined by the following minimization problem:

K
min ) i fe(w)de + R 1) (1)
k=1 k

The second term in Eq. (1) is a jump penalty which is usually defined as follows:

K K
RUDH) = 321000 = a(a)ds, e

where a(x) is an edge detector defined as a(x) ~ and § are manually set

— B

= TAVLE
parameters controlling the property of edge detector. I, is the result of convoluting
the image I(z) with a Gaussian kernel g,. The jump penalty is a scaled sum of

boundary total length when a(z) is a constant A € R.
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4 FAN JIA , XUE-CHENG TAI, AND JUN LIU
If we define an indicator function ¢y (z)(k = 1,2, - , K.) on the k-th sub-domain,

1 zeQ
0 otherwise.

outa) = { 3)

then we have

PO Joq, a(z)ds = Yior Jo (@) 9¢n(x)|dx, (4)
where ¢ = (¢1,- -+, ¢k ). The segmentation condition becomes a relaxed one
5= {¢(= Zm = 1,0 < ¢n(x) <1}, (5)

Corresponding to the binary segmentation constraint on ¢y in (1), one can get
the following convex programming problem which is a dual of a min-cut problem:

gleigz/fk Joul dz+2/ )|V () do. (6)

2.2. Graph Model for Data Clustering. Graph model is a useful tool if we
want to utilize pairwise relations between pixels. A undirected weighted graph
G = (V,E,w) is constructed by vertex set V, edge set E and a weight function
w : E — R4 which is defined on the edges. In the image segmentation task, each
image could be seen as a graph, each pixel in the image is a vertex. For x;,z; €V,
wij = w(w;, l’j) measures the similarity between two vertexes.

Since an image often has at least dozens of thousands of pixels, the computation
and memory cost will be extremely huge if we use complete graph. Therefore, we
assume that each pixel is connected to only a portion of other pixels. Then we get
a sparse affinity matrix W. There are several methods to measure the similarity
between two pixels. Given a distance metric dist(-) which measures the distance of
the feature vector of two pixels z; and z;, the radial basis function (RBF) [27] is
defined as:

Wl 1) = exp (FLtGmn) (7)

If we replace the constant 2e with the product of local variances o(z;)o(x;), here
comes the Zelnik-Manor and Perona function (ZMP) [36]:

—dist(xq,z; 2
wlas ) = oxp (2t "

The cosine similar function is also widely used to measure the similarity between
two non-zero vectors. It is defined as:

w(zg, xj) = cos(x;, xj) = Tf:ﬁiﬁ, 9)

In the fully connected pairwise CRF model [13], the weight function is often
defined by pairwise potentials as

wy (i, 7;) = pu(xi, 25) Yom—1 Am exp(— 5 (Fi, £)T A (£, 7)), (10)

where f; and f; are feature vectors for pixels z;, z;, Ap, is a coeflicient to control
the impact of each kernel, and p represents the label compatibility function. A,, is
a symmetric, positive-definite precision matrix.
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NONLOCAL REGULARIZED CNN FOR IMAGE SEGMENTATION 5

Let p(z;,z;) = 1if x; # x; and p(z;, ;) = 0 otherwise, we use RGB color
vectors I;,I; and spatial positions p;,p; as feature vectors. Given two different
pixels, the weight function in Eq. (10) can be rewritten as:

]2 T 112 o2
w(fﬂi,%‘) = A exp (7“1’12 pill®  [Li—I;]l ) + Ao exp (7”:01 p;ll ) 7 (11)

o™ 203 20,

where 0,030, are parameters controlling the scale of Gaussian kernels. The first
term depends on both pixel colors and positions. Pixels with small differences in
positions and colors are likely to have the same label. The second term only takes
into account the spatial correlation, isolated points and regions will be removed.

2.3. Graph Operators. After introducing the weight functions in graph, some
graph operators will be given in the following. One important operator is gradient
operator. Given u € L?(V) defined on the vertex set, the gradient operator

Ve : L?(V) = L%V x V) (12)

is defined by
(Vwu) (@i, 25) = w(zi, z5) (u(z;) — u(z:)). (13)
So Vu is a function in L?(V x V). Since we assume each pixel is only connected

to a small potion of other pixels, we get a sparse graph G and each x; has at most
d neighbors. Then (V. u)(x;,x;) is a sparse vector

(Vwu) (@i, 25) = (w(@i, z;)(u(;) — w(@i))e,en (@) (14)
with at most d non-zeros.
Correspondingly, the divergence operator

divy : L2(V x V) — L?(V) (15)
is given by
(divpv) (i) =32, en w(@s, 75) (v(wi, 25) — v(w),24)), (16)
where v € L2(V x V),.
2.4. Discrete Potts Model. Given a graph G = (V,E,w), we want to classify

the vertexes V into K partitions, denoted by Vy,--- V. Then the corresponding
indicator function ¢y (x;) for the k-th class is defined as:

QZSk(iL'l):{ lif x; € Vi

0 otherwise. (17)
The discrete counterpart of the Potts model defined in Eq. (6) is given by :

K K

mind > fe(@)ow(ws) + Y NLTVa(@r), (18)
k=1a,€V k=1

where fi(-) is a region force function and NLTV,(¢r) is the a weighted non-local

total variation. As the dual norm of ¢;-norm is fo.-norm, NLTV,(¢i) has the

following form:

NLTV,(¢r) = e < Va®k, g >
9k |joo S
= max — < ¢, diVyqr >
[1=grlloo < P o (19)

= max > . oy k(@) (divegr) (i),

llgk|loo <a
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where < -, > is the standard inner product of two vectors, g is the dual variable
of ¢, V4 and div,, are non-local gradient and divergence operators defined in Eq.
(14) and Eq. (16), respectively.

3. Proposed Method. Usually, a softmax layer is employed as the last layer of
a neural network, converting an input feature vector into a probability distribution
vector. The sum of elements in the probability vector is 1.

3.1. Softmax for CNN Segmentation Task. Given a vector o = (01,09, -+ ,0k) €
R, the softmax activation function S : R¥ — RX is given by:
ek _
S(Ok):W7k_la'”7K' (20)

Given an image with size N = N; X Ny and Ny, Ns is the height and width. If
we want to segment the image into K classes using CNN, here comes the following
minimization problem:
. N K I
mun Doim1 Dok—1 —@ik * Oik + @ik - log(aik) ¢, (21)
where A = (a;) € RV*K is the activation function, S is the soft segmentation

condition defined in (5), and o = (0;;) € RV*X is the feature map taken as input.
Eq. (21) could be rewritten as:

E?ég {Ele — < Ap, 0 >+ < Ag, logAy >} , (22)
where A;, € RY is the k-th column of A, o, € R is the k-th column of 0. Solving
the minimization problem in Eq. (22), the minimizer is

exp(0ik) i=1,2,---Nk=1,--- K. (23)

ik T K explog)’
This is just the standard softmax activation function and we denote it as:

A* = S(o). (24)

3.2. Proposed Non-local TV Regularized Softmax Function. Now we re-
place the edge force item in Eq. (18) with the function Ele — < Ag, 01 > + <
Ag,logAy > which is defined in Eq. (22) and regularize the prediction result by
non-local total variation. We set the edge detector a(z) as a constant parameter A,
the regularized Softmax function is defined as:

min {z,ﬁil — < Ap, 0 > + < Ay, logAj, > +ANLTV(Ak)} . (25)

The variational formulation of non-local total variation is given by

NLTV(Ay) = m

ax
e ERN XN |ng |00 <1

< A, divygmy >, (26)

where 1, € RV*¥ is the dual variable of A; . The minimization problem Eq. (25)
can be reformulated as a saddle-point problem:

. K .
= < Ag, < Ap,l >+ < Ag, divy, >}.
min | max | {Zk_l Ap, 01, > + < Ay, log Ay > + < Ay, divy i (27)
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The above minimization problem can be solved by primal-dual hybrid gradient
method updating dual variables 7, and primal variables Ay alternatively. The
iteration is given by

nt =My =7V A, k=1, | K
(28)
Al = S(op, — divyn},),

where t is the iteration number.
We also record the primal energy and dual energy during the iteration to monitor
the convergence of the algorithm. The primal energy Ep(.A) is as follows:

Ep(A) =K | — < Ay, 01 > + < A, logAr, > +ANLTV (Ag).  (29)
The dual energy Ep(n) is as follows:
Ep(n) =Y iy — < Ak, 0r > + < Ap,logAy > + < Ay, divy, () >, (30)

where Ay = S(0r — divy, (ni)).
There are two stopping criteria, a maximum of 1500 iterations is reached or the
relative absolute duality gap is smaller than a threshold e, i.e.:

|Ep—Ep|
TE SO (31)

where e = 107° in our experiments.

Algorithm 1 Primal-Dual Hybrid Gradient Decent Method

Require: the output of last layer o, initialize n° = 0, A° = S(o).
Ensure: A

1: function Non-local Regularized Softmax

2: 7=0.03, A =3,

3: for t =1,...,T 4+ 1 until convergence do
calculate VA,
for k=1,..., K do

nz = HanHooSA(nltc_l - TVU’AZ_1)7 k= 17 e 7K

end for
calculate div,,n?,
for k=1,..., K do
10: calculate A} = S(o — divy,n),
11: end for
12: end for return A
13: end function

© %2 NS Tk

We iteratively perform Eq. (28), when it converges, we get the optimum of Eq.
(27), A* = lim A'n* = lim n'. Then we have the regularized softmax
t——+oo t——+oo

A" =8S(0 —divy(n)),n" = (1, M2, -+ k) (32)
Replacing softmax with regularized softmax, we have regularized A* and
eoik—divwnfk

K 0,1 —divyn’, "
p ik wll,
i€ k

*

ik —

(33)
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8 FAN JIA , XUE-CHENG TAI, AND JUN LIU

In our numerical experiments, we set 7 = 0.03 and A = 3. Generally, we initially
select a large A and a small step size 7 to perform the algorithm. Since the pa-
rameters A and 7 are image dependent, we iteratively finetune the parameters and
finally select a best set of them. It is summarized as Algorithm 1.

Noticing that the second term in Eq. (25) could be seen as a negative entropy
term which can enforce A to be smooth. If we add a control parameter € > 0 to it,
Eq. (25) becomes

filé% {Zszl — < Ag, 0 > +e < Ag, log Ay, > —i—)\NLTV(A;C)} ) (34)

The corresponding minimizer is
* o — divwn* * * % *
A S(E ),n = (1M, 5K )- (35)

We can see that when adding a control parameter ¢, it is equivalent to rescaling the
output of regularized softmax by a factor % In all our experiments, we set € = 0.5.

3.3. General Convolutional Neural Network for Semantic Image Segmen-
tation. A general convolution neural network consists sets of convolution layers and
activation layers. Given an input v, the convolution layer can be formulated as:

T(v) = Wo +b, (36)

where W is a linear operator such as convolution or deconvolution, b is a bias.
The activation function takes o as input and outputs v, it can be represented by

v = A(o), (37)

where A can be ReLLU, softmax, sigmoid, sampling and other activation functions.
Given an image as input, a general convolution neural network with L layers can
be described by recursive connections as follows:

0

v = v,
ol = T@l—l(’l}l_l), (38)
vl = Ala!),l=1,...,L,

where © is the parameter set, and we have ® = {®' = W', b))| 1 =0,...,L —1}.
Given a training dataset and a loss function £, the CNN learns a parameter set
© by iteratively training such that a loss functional £(Neg(X),Y) is minimized by
©. The training dataset consists of M images X = (vy,vs,..., vpr) € RMXN1N2
and their ground truth segmentation Y = stack(y1,y2, - ..,y ) € {0, 1M XEXNN:
with y,,, € {0, 1}E*NNz,
A widely used loss function in many tasks is cross entropy which is given by

M

Z < Ym, log Ne (zm) > . (39)

m=1

1

LNe(X),Y) = i

The algorithm of learning is a gradient descent method:

oL
lystep _ l\step—1
(@) = (01 ™0 567 o1 ot (40)
where step = 1,2,... is the training iteration number and 7g is a hyper parameter

oL
0e!

controlling learning rate. can be calculated by back-propagation technique



© o N o ua »

10
11

12

13
14
15

16
17

18
19

20

21

22
23

24
25
26
27
28
29
30
31
32

NONLOCAL REGULARIZED CNN FOR IMAGE SEGMENTATION 9

using chain rule. Let Al = %, then the back-propagation scheme is in the following

Al — 9l 00 or
- Bo’l 0870’ Oolt1
= %Al . ael’ LA (41)
o v )
AL _ 9ot oL _ 9Tgr CAH
207 — 9@! " 9oltT T 9l )

where [ =0,1,..., L — 1.

3.4. Back-propagation of Regularized Softmax. During the forward propa-
gation stage, we obtain a regularized o by performing Algorithm 1 when given the
output of last layer o, n° = 0, A = S(0) as the initial values. The gradient of loss £
with respect to o should be computed in the back-propagation stage. The for loop
in Algorithm 1 is performed T + 1 steps during each forward propagation iteration,
the gradients are computed in an inverse order.

Since n’ only contributes to computing A* when t = 1,...,T + 1, the gradient of
L with respect to n' is given by

t
%: gjt-%ﬁt,tzl,...,T+1. (42)

Eq. (28) could be reformulated as :

gltc = 6]271 - TVS(Ok — divwn]iil%
7712 = H||€k||oo§)\(§]tc)’ (43)
Al =S (o, — divyn},) .
€* contributes to computing both ¢ and £+! when ¢t = 1,..., T. However, £7+1
T+1

contributes to compute 7 only. Then the gradient of £ with respect to &¢ is

given by
t
oL | HE Sk t=T+1 ()
—_— = t
ot 8L S+ 5, t=1,...,T.
A? is the input to compute £¢*! when t = 0,...,T, then the gradient of £ with
respect to A’ is given by

oL oL ogttt t=0
AT T  EFT T T9AT 0 v T e

T. (45)

“ey

o contributes to computing each A* when t = 0,...,T +1. A is initialized with
S(0), finally the gradient of £ with respect to o is given by

’ T+1 / ,

% = aa,fﬂ S (o) + Zt:l 88,4% S (o~ dww(nt))- (46)

% is given by the loss layer in the backward propagation stage, so we can
successively get %, agaTLH , %, A 887%’ gTle 88,463 by Eq. (42), Eq. (44) and Eq.

(45).
At last, % is given by Eq. (46).

3.5. Implementation Details. Since the total variation in this paper is defined
on graph, we treat each input image as a graph G = (V,E,w) and each pixel is a
vertex in V. One essential problem is how to define a proper edge set E and weights
of edges. Assuming that each pixel is connected to at most d neighbors and these
neighbors are chosen according to distances between the feature vectors of pixels.
Geometrical four nearest neighbors may not be among these d neighbors. When
each pixel is connected to every other pixel, G is a fully connected graph. When
each pixel is connected to only a few neighbor pixels, G is a sparse graph, then
VwAg and div,ni, are both sparse. We tried different d and found that a small d
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could work well. We will show some experimental results of different d in Section
4.

When we introduce regularized softmax to CNN, we need to keep each AL, 7t
and some intermediate variables in graphics memory during forward propagation
stage as they will be used to compute gradients in the backward propagation stage.
Therefore, if d or t is too big, numerous computation and memory resources will be
required. We use a small ¢ and d in our experimental part, but there is still obvious
regularization effect.

(d) d=10 (e) d=20 - (f) d=40

FIGURE 1. An example of segmentation results by applying the
algorithm of [34] and our proposed method on an image from
BSD500. When using 4 geometrical nearest neighbors, the weights
are set to 1. The segmentation is quite smooth and missing de-
tails (Figure 1(b)). When we use Eq. (11) to compute W, the
segmentation results are with more details and better accuracy.
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NONLOCAL REGULARIZED CNN FOR IMAGE SEGMENTATION 11

The limited GPU memory can only store variables of no more than dozens of
steps, we only perform Eq. (28) one or a few steps each iteration in the training stage
which indeed brings regularization effect. What’s more, even though the primal
energy curve continuously decreases in hundreds of steps, the segmentation results
change slightly after dozens of steps. It’s a trade-off between accuracy, memory
resources and efficiency. We set the initialization £ and 7" to 0, respectively. Then
the first iteration is

fli = _TVS<OIC)’
M = Mg io<a(€p), (47)
L =8(ok — divyn})

According to the back-propagation procedure described in Subsection 3.4, the
gradient of £ with respect to o could be computed easily.

4. Experimental Results. In our experiments, we rescale all the intensity of the
images to [0,1]. First of all, we try different d and select a proper one by comparing
the segmentation results from a toy example.

In [34] several images from BSD500 [19] were selected to test their algorithm.
We use the same image for comparison. In their experiments, each pixel has 4
neighbors and the weights of edges are set to 1. In this experiments, we use Eq.
(11) as our distance metric and select the nearest 4,10,20,40 neighbors to perform
our algorithm, respectively.

The parameters in Eq. (11) are set as follows, \y = 1, Ay = 0.5,0, = 40,03 =
13/255,0., = 3.

From Figure 1, we can see that, when using 4 geometrical neighbors with constant
weights, the segmentation result is properly regularized and smoothed. There are
not so many details. However, when using weights computed by Eq. (11), more
details are preserved. When there is a few neighbors, the segmentation results
appears to be a little noisy. There are many obvious isolated small regions on
the vegetables and planks. The segmentation results appear to be smoother with
increased number of neighbors. Nevertheless, a large number of neighbors need
extra computation memory resources. In our experiments, we use d = 20 for WBC
Dataset[37], d = 10 for CamVid Dataset[11].

We apply our proposed method to Unet, Attention Unet[23] and Segnet [3] us-
ing Caffe implementation. Unet, Unet with local regularization (RUnet)[10], Unet
with non-local regularization (NLUnet), Attention Unet(AUnet), Attention Unet
with local regularization(RAUnet), and Attention Unet with non-local regulariza-
tion(NLAUnet) are tested on White Blood Cell Dataset [37]. Segnet, Segnet with lo-
cal regularization(RSegnet)[10] and Segnet with non-local regularization(NLSegnet)
are conducted on CamVid Dataset [11].

For each network, we use SGD solver with momentum of 0.9. We set the learning
rates to 0.0001 for Unet and its variations, the weights of Unet, RUnet, AUnet and
ARUnet is randomly initialized. The weights of NLUnet and NLAUnet are finetuned
from Unet and AUnet, respectively. We set the learning rates to 0.001 for Segnet,
RSegnet and NLSegnet. Like the author of Segnet, we also initialize the weights of
Segnet and RSegnet from the VGG model trained on ImageNet [9]. The weights of
NLSegnet is finetuned from Segnet.

In data preparation stage, we compute the affinity matrix for each image. Since
the affinity matrix is sparse, we use two matrices to represent it. One is W = (w;),
it keeps the edge weights computed by Eq. (11). The other is Widz = (widz;), it
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keeps the indexes of nearest neighbors of the i-th pixel. We save the two matrices
as local files so that we can load them during training and testing stages. Global
pixel accuracy and mean intersection over union (mloU) are two common metrics
in image segmentation tasks, we also use them as our quantitative measures.

When evaluating a standard machine learning model, the prediction results are
usually classified into four categories: true positives(TP), false positives(FP), true
negatives(TN), and false negatives(FN). Global accuracy gives percent of pixels in
all images which were correctly classified. The global accuracy is defined as

TP+ FP
TP+FP+TN+FN’
The Intersection over Union (IoU) metric, also called the Jaccard index, calcu-
lates the percent overlap between the ground truth mask and the prediction output.
The IoU metric is defined by

(48)

Accuracy =

B TP
TP+ FP+FN’
For multi-class segmentation tasks, the mean IoU(mloU) is the mean value of the

IoU of each class.
The RE score defined in the article[10] measures the regularization effect of seg-
mentation result. Segmentation results with lower RE scores have smoother edges

and less isolated regions.

IoU (49)

4.1. WBC Dataset. There are two sub-datasets in White Blood Cell Image Dataset
[37]. The image size in Dataset 1 is 120x120. It is too small for a CNN-based seg-

mentation task. Dataset 2 consists of one hundred 300x300 color images. There

is one white blood cell in the center of each image. Each image consists three

classes, nucleus, cell sap and background. Comparing to Dataset 1, Dataset 2 is

more suitable for a segmentation task thus selected in our experiments.

<105 primal-dual energy <108 primal-dual energy

primal energy

primal energy -6.06
— — dual energy

— = dual energy

500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500

(a) Convergence of RSoftmax (b) Convergence of NLSoftmax

FIGURE 2. Given an input O, A = 3 and 7 = 0.03,we perform al-
gorithms for regularized softmax with local operator and non-local
operator, respectively. Figure 2(a) is the convergence of softmax
with local operate, the primal energy curve has a peak during the
iteration. While in Figure 2(b), the energy curve drops rapidly at
first and finally converges smoothly.
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[10]

NLUnet

FIGURE 3. Segmentation results predicted by Unet, RUnet and
NLUnet on images from testing dataset of White Blood Cell. From
row 2 to row 5, The black regions are background, the gray regions
are cell sap, the white regions are nucleus.

TABLE 1. Results of Unet, RUnet and NLUnet trained on WBC Dataset.

Method Unet [25] RUnet [10] NLUnet

mloU 89.79 90.15 90.80
Accuracy  97.04 97.13 97.42
RE 1.82 1.30 1.59

The training dataset contains 60 image randomly picked from WBC Datset2.
The others are used for testing. We finetune Unet with non-local softmax(NLUnet)
from Unet for 10k iterations. The CNN weights of Unet and RUnet are randomly
initialized and they are trained for 20k iterations. Since the non-local softmax will
take up some graphics memory for computing V,, A and div,,m, the mini-batch size
is three.

Since the affinity matrix W measures the similarity between pixels, if the pixel
color value is perturbed, W will become inaccurate and wrong pixels will be selected
as nearest neighbors. In our experiments, all the image used in training and testing
stages are clean image, no noise is added to them. From Table 1 we can see that
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both mlIoU and accuracy of NLUnet are improved compared to RUnet on testing
dataset. The RE score of NLUnet is higher that RUnet, but less than Unet. This is
because NLUnet could eliminate some isolated regions and produce smooth edges.
Nevertheless, NLUnet can also preserve some details.

We show the convergence of RSoftmax and NLSoftmax in Figure 2(a) and Figure
2(b), respectively. The primal energy and dual energy of NLSoftmax are computed
by Eq. (29) and Eq. (30), respectively. The primal energy and dual energy of
RSoftmax are computed by the same equations after replacing the non-local oper-
ators V., div,, with local operators V,div. In Figure 2, the y-axis represents the
energy value and the x-axis represents iteration number. Since we use a very small
step size 7 = 0.03, the energy values of primal and dual functions converges with
1000 iterations. We can also use a larger step size to make them converges faster.

-

a) Enlarged View ) Ground Truth (¢) Unet [25]
(d) RUnet [10] ) NLUnet

FIGURE 4. An enlarged view of segmentation results from Figure 3.

In Figure 3, we can see that NLUnet provides more details comparing to RUnet.
In Figure 3 column 1, the segmentation result of Unet misses some nucleus RUnet
provides better segmentation results. The nucleus regions are closer to ground
truth, but still some details are missed. NLUnet achieves the best segmentation
result. There are less isolated regions and the edges are smoother comparing to
Unet. Meanwhile, details are well preserved. Figure 4 is an enlarged view, we
can see the segmentation details clearly. In Figure 3 column 2, we can see that a
part of cell sap(grey region) is missing on the right hand side in both Unet and
RUnet, while the segmentation result of NLUnet is relatively complete. In Figure
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ground
truth

AUnet
23]

RAUnet
[10]

NLAUnet

FIGURE 5. Segmentation results predicted by AUnet, RAUnet and
NLAUnet on images from testing dataset of White Blood Cell.
From row 2 to row 5, The black regions are background, the gray
regions are cell sap, the white regions are nucleus.

3 column 3, there are two thin lines connecting different parts of nucleus(while
region), Unet misses one of them and RUnet misses both of them. Surprisingly,
NLUnet successfully preserves those details. If we take a closer look at the curves
of nucleus and cell sap, we can see that the result of Unet is quite rough, RUnet
gives much smoother edges. The edges provided by NLUnet are smoother than
those of Unet, and more closer to ground truth comparing to RUnet. In Figure 3
column 4, we can see that the segmentation result of Unet is fragmented. RUnet
gives a smooth segmentation result, but the nucleus is smaller comparing to ground
truth due to its regularization effect. While NLUnet give relatively good result and
the segmentation is closer to ground truth.

Since some variations of Unet appear in recent years, here we also use Attention
Unet(AUnet)[23] to further evaluate the performance of our method. Comparing
with original Unet, the Attention Unet introduces attention gates to help the net-
work focus its attention on foreground. We simply add attention gates to Unet
as the author do and use our own Caffe implementation. Excepting the attention
gates, the other configurations are the same with Unet.

From Table 2 we can see that the attention gates help improve the performance
of Unet. Nevertheless, the Attention Unet with local regularized softmax activation



©® N o g A W N

10
11
12

16 FAN JIA , XUE-CHENG TAI, AND JUN LIU

TABLE 2. Results of AUnet, RAUnet and NLAUnet trained on
WBC Dataset.

Method AUnet [23] RAUnet [10] NLAUnet

mloU 90.75 91.01 91.69
Accuracy 97.35 97.40 97.57
RE 1.43 1.41 1.43

function(RAUnet) and the Attention Unet with non-local regularized softmax acti-
vation function(NLAUnet) further improve the mIoU and accuracy. Our proposed
method achieves the best result.

In Figure 5, we can see that the segmentations of nucleus(white regions) are
very close to ground truth. Comparing with Unet in Figure 3, AUnet gives more
complete nucleus. Inside the cell sap, there are some bubbles which looks very close
to background. This may distract the attention gate such that some cell sap pixels
are classified as background wrongly.

road
scene
image

ground
truth

RSegnet
(10]

NLSegnet

FIGURE 6. Segmentation results predicted by Segnet, RSegnet and
NLSegnet trained on CamVid Dataset.

4.2. CamVid Dataset. CamVid Dataset [11] consists of a sequence of road scene
images with size 360x480 collected by driving a car in the city of Cambridge. There
are 367 images in the training dataset and 233 images in the testing dataset. This
dataset contains 11 classes and pixels are ignored both in training stage and testing
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1 stage if they don’t belong to these 11 classes. The authors of Segnet choose this
2 data as their benchmark dataset.

(a) Enlarged View

(b) Ground Truth (c) Segnet [3] (d) RSegnet [10]

(e) NLSegnet

FIGURE 7. An enlarged view of segmentation results from Figure
6 column 2.

3 We apply our non-local regularized softmax layer to Segnet, other configurations
4 remain the same. The initial weights of Segnet are finetuned from the VGG model
5 trained on ImageNet, its mini-batch size is four. The CNN weights of NLSegnet is
6 initialized from Segnet and finetuned for 3k iteration with learning rates fixed to
7 0.01. The mini-batch size of NLSegnet is 1.

8 From Table 3 we can see that both mIoU and accuracy of NLSegnet are improved
o compared to RSegnet on testing dataset. The RE score of NLSegnet is higher that
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(a) Enlarged View (b) Ground Truth (c) Segnet [3]

7

(d) RSegnet [10] (e) NLSegnet

FIGURE 8. An enlarged view of segmentation results from Figure
6 column 1.

TABLE 3. Results of Segnet, RSegnet, NLSegnet trained on
CamVid Dataset.

Method Segnet [3] RSegnet[10] NLSegnet

mloU 57.35 57.79 59.84
Accuracy  87.74 88.01 88.59
RE 4.10 2.43 3.40

RSegnet, but less than Segnet. The result is very similar to that of WBC dataset.
But it is important to note that the mloU is significantly improved from 57.79 to
59.84 by NLSegnet. Since mloU measures the mean intersection over union of overall
classes, the main gain in mIoU comes from classes which have small proportion
pixels, such as pole and traffic sign. As non-local softmax could preserve more
details, this can greatly benefit these minor classes.

In Figure 6, we can find that NLSegnet preserves many details such as tree
branch, pole and roof top. In Figure 6 column, many isolated points and regions
are removed in RSegnet and NLSegnet, there is a signal sign which is in pink color
on the left hand side. The signal sign has a square shape which is well preserved
by NLSegnet. Distinct details could be found in the enlarged view in Figure 8.
However, the signal sign is distorted and becomes irregular in the segmentation
results in Segnet and RSegnet. In Figure 6 column 2, the roof top on the left hand
side is well preserved by NLSegnet, the segmentation result is nearly the same with
ground truth. More details could be found in Figure 7. The segmentation result
of Segnet is very coarse, whereas RSegnet gives smooth edges but some details are
missed.
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5. Conclusions and Future Work. Even though regularized softmax with local
operators could eliminate scattered points, tiny regions and give smooth edges, some
details are often missed. Inspired by regularized softmax with local operator, we
successfully apply non-local operator to regularized softmax. After observing the
experimental results on WBC Datset and CamVid Dataset, our proposed method
obviously helps improve the performance of Unet, Attention Unet and Segnet. The
proposed method not only inherits the regularization property from regularized
softmax, but also showcases its prominent performance by preserving many more
details. Since our method is a variation of softmax activation function, it is appli-
cable to all networks with softmax. Especially, it can showcase its performance on
small datasets with simple network structures. Now the parameters in computing
the pairwise potential Eq. (11) is manually tuned. In the future, we will find a way
to generate the affinity matrix W online efficiently and make the parameters in Eq.
(11) trainable.
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