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Abstract In this paper, a new variational framework
of restoring color images with impulse noise is pre-
sented. The novelty of this work is the introduction of
an adaptively weighting data-fidelity term in the cost
functional. The fidelity term is derived from statisti-
cal methods and contains two weighting functions as
well as some statistical control parameters of noise. This
method is based on the fact that impulse noise can be
approximated as an additive noise with probability den-
sity function (PDF) being the finite mixture model. A
Bayesian framework is then formulated in which likeli-
hood functions are given by the mixture model. Inspired
by the expectation-maximization (EM) algorithm, we
present two models with variational framework in this
study. The superiority of the proposed models is that:
the weighting functions can effectively detect the noise
in the image; with the noise information, the proposed
algorithm can automatically balance the regularity of
the restored image and the fidelity term by updating the
weighting functions and the control parameters. These
two steps ensure that one can obtain a good restoration
even though the degraded color image is contaminated
by impulse noise with large ration (90% or more). In ad-
dition, the numerical implementation of this algorithm
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is very fast by using a split algorithm. Some numerical
experimental results and comparisons with other meth-
ods are provided to show the significant effectiveness of
our approach.

Keywords Color image - Deblurring and denoising -
Impulse noise - Variational regularization methods -
EM algorithm - Split Bregman method

1 Introduction

Image restoration is an old and fundamental problem
in image processing, but it continues to attract the at-
tention of many researchers. The image degradation
process is often considered as a shift-invariant model.
For color images, this process could be mathematically
modeled by

g=kx*xf+n,

where g : 2 C R? — [0,1]3 is a vector-valued function
which represents the degraded color image, f : 2 C
R? — [0, 1]? is the original clean image, n denotes ran-
dom noise, k : R? — R stands for a known blur kernel,
the symbol * refers to the convolution operator and kx*f
represents k convoluting with each component of f. The
deconvolution, or image restoration, is to recover the la-
tent image f from the given observed image g, which is
an ill-posed inverse problem.

Statistical models and variational regularization meth-
ods are the most two popular techniques for image
restoration in recent years. The statistical approaches
(e.g.,[1-3]) are mainly based on maximum likelihood
estimator (MLE) and Bayesian maximum a posteriori
(MAP) method. The variational methods (e.g.,[4-6])
get a latent image by minimizing of a cost functional.
Most of these traditional image restoration literatures



(e.g., [4,7,8]) only consider the case of blurred grey scale
images with a small amount of additive Gaussian noise.

However, in real applications, the images we ob-
tain are sometimes contaminated with blur and im-
pulse noise. Classical techniques for removing impulse
noise are mainly based on median-type filters (e.g., [10,
11]), which are very effective for noisy images but may
fail when the images are further degraded with blur.
Due to the superiority in preserving edges, some vari-
ational based methods have emerged in recent years
to deal with impulse noise. In [12,13], Nikolova et al.
proposed a variational framework for deblurring grey
scales image with impulse noise. A significant contri-
bution of their work is that some nonsmooth fidelity
terms such as L'-based fidelity terms were introduced
to remove impulse noise. Bar et al. [14] developed it
by considering different Mumford-Shah functional reg-
ularizers and they extended it to the color images in
[15]. Yang et al. [16] proposed an efficient algorithm,
FTVd (fast total variation deblurring), for TVL! model
to deblur color images with impulse noise. Comparing
with the previous methods, their approaches could re-
move impulse noise more efficiently. However, the re-
constructions are not satisfactory when the images are
seriously degraded by blur and noise. In [17], Cai et
al. introduced a Mumford-Shah two-phase method to
deblur images with both Gaussian noise and impulse
noise. In the first step the likely noisy data identified
by a median-type filter is removed from the data set. Af-
ter that the image is reconstructed from the remaining
data entries. To implement the algorithm fastly, they in
[18] used L! — L! minimization in the second step of the
two-phase method. Huang et al. [19] used TVL?-based
two-phase method to reconstruct images and offered a
fast alternating minimization algorithm. Experimental
results have shown that the two-phase method performs
well for salt-and-pepper noise. However, it cannot get a
satisfactory result for high density random-valued noise
because the median-type filters fails in this case. As is
shown in [17-19], the two-phase restoration result is not
good when the image is corrupted by random-valued
noise with noise ratio more than 55%. Of course, the
two-phase method cannot well handle mixed noise such
as Gaussian mixture. In [20], a statistical method is em-
ployed to recover blurred grey scale images from mixed
noisy data. Essentially, we include a L2-based weighting
fidelity term in the cost functional, which has a supe-
rior performance in removing mixed noise, especially
when the level of noise is high. In fact, it could also be
considered as an adaptive two-phase method.

In this work, we generalize our preliminary study
(GM-TV model) to vector-valued/color images with im-
pulse noise or other mixed noise, and present two new

models called TVAWL? and TVAWL! (total variation
based adaptively weighting L? / L' method). These two
models can restore blurred color images in the pres-
ence of high density impulse noise (with 70% density
or more). The approach is formulated on the fact that
probability density function (PDF) of impulse noise
can be approximated as an additive noise with mixed
Gaussian or two-sided exponential distributions. In con-
trast with existing variational models, a new adaptively
weighting fidelity term is introduced in the proposed
cost functional. Noise could be automatically detected
by the weighting functions, so our approach can obtain
an impressive reconstruction even though the image is
corrupted by high density impulse noise. In addition, we
introduce some control parameters to the fidelity term,
which make the regularization parameter in the pro-
posed models less sensitive than that of others. More-
over, in this study, all the proposed models are solved
by splitting schemes, which could significantly speed up
the numerical implementation process.

The rest of the paper is organized as follows: in sec-
tion 2 we first give some basic notations which is used in
this paper, then we introduce the impulse noise model
and some approximations to its PDF; the expectation-
maximization (EM) algorithm which is used to esti-
mate the parameters of the approximated PDF is re-
viewed in section 3; in section 4, the proposed TVAWL?
and TVAWL! models are described; section 5 contains
some details about the implementation of the algorithm
and experimental results; finally, we summarize our ap-
proach and conclude the paper in section 6.

2 Basic Notation and Motivation
2.1 Notation and Definition

Throughout this paper, we use boldface type (e.g. f) for
vectors or vector-valued functions. To simplify repre-
sentations, we introduce here the notations used through-
out the paper.

Functions:

p,p1,p2 : R = RT, which always denote PDF.
frrgrwy: 2 CR? = [0,1], 7=0,1,2.
f.g,w: 2 CR*—[0,1]°,

do,d;,ds: 2 C R? - R?,

d: 2 cR? - R

f= (anflva)Tvg = (90791792)T7

w = (wo, w1, w2) ", d = (do,dy,da).



Inner products and norms:

2 2
<f,g>=> < frgr >= Z/ frgr da,
=0 7=0 2

2 2
<f.g>w= Z < Wy frygr >= Z/ wr frgr d,
=0 =0 2
2
it =<te>=>" [ f2as
=0 2
2
By =< £.8>u=>" [ w f2da
=07
2
itlh =" [ 11]d
=079

2
||f\|1,w:2/ wlf, | de,
=071

If| =/ f3+ 12+ 13,

|d] = V/[do[? + [di[? + |daf>.

Operators:

Vf = (Vfo,Vf1,Vfa),
A = (Afo, Af1, O fo)T,
V-d=(V-dy,V-d;,V-dy)T,
)T

fg = (fogo, f191, 292

)

22 (f3, 1. )"

f A fO fl f2)T

g B 90 91 92
p(f) = (p(fo)vp(fl)ap(h))T’
it = (1ol Ifuls [ fl) ™

Discretization:

let fi ;-0 <¢<m —1,0<j < my—1 denote the
discretization of f.,7 =0,1,2. We also write f; ; r in a
vector form in which the 7' -th element f is f; j» with
i =i+ jm1 + 7mims. These will be used extensively
in the later sections.

2.2 Impulse Noise Model and Some Approximations to
Its PDF

Two common types of impulse noise are random-valued
noise and salt-and-pepper noise. Let the noise ratio be
r. At each pixel the image intensity of the noisy image
remains the same with probability 1 —r and is changed
to a uniformly distributed random number with prob-
ability r, which is referred to as random-valued noise.
Salt-and-pepper noise has a similar formulation except
that the changed pixel intensities have only two possible
values with probability r; and ro respectively. Mathe-
matically, the process of image degradation with im-
pulse noise can be described as

gijr = Tk *£)i ;]

where ¥ is an operator which represents the impulsive
process. Thus for random-valued noise,

(k*£); j.-, with probability 1 —r,
a, with probability r.

Sk < £)s5r1 = {

In the above equation a is a random number which is
uniformly distributed in [0,1]. Similarly, the salt-and-
pepper noisy image is given by

(k *£); -, with probability 1 —r; — 7,
T((k«f); ] = 0, with probability 71,
1, with probability ro.

Impulse noise is never additive, but it can be regarded
as g = kxf + n, where

- 0, with probability 1 —r, (1)
Mg = 4 — (k *f); j -, with probability r,

for random-valued noise and for salt-and-pepper noise,

0, with probability 1 — ry — ra,
nijr =13 —(kxf);;,, with probability 7,
1 — (k*f£); ;, with probability rs.

Suppose n; j - is a realization of a random variable N/
with PDF p(y), then p(y) has the following properties.

1. Random-valued noise.
Assume 0, — (k xf); ; ; are the realizations of two
random variables Yy, Vs with PDF p;(y), p2(y). Ac-
tually p; is the Delta function 6 and p(y) is give
by

Y

p(y) = (1= r)3(y) +r / pa(2) dz. @)

y—1

See Appendix A. 1 for more details about this cal-
culation. The blur kernel k is usually assumed to sat-
isfy nonnegativity condition £ > 0 and DC-condition
[kdz = 1 to get a well-posed solution (see e.g.



[21]). With these two conditions, we can easily get
-1 < —(kxf);;, < 0for 0 < f; < 1. Thus
p2(y) = 0 for all y ¢ [—1,0]. In other words, p(y) is a
compactly supported function with support [—1,1].
In addition, we have the following proposition for

p(y).-

Proposition 1 p(y) is monotone decreasing in (0, 1]
and monotone increasing [—1,0); moreover, if
p2(—0.5 + z) = p2(—0.5 — 2) holds for all z, then
p(y) = p(—y). Namely, if p2(y) is symmetric around
-0.5, then p(y) is symmetric around 0.

Proof By (2) and the property of po,

Tfflpg(z) dz, —1<y<0,

ply) = .
Tfyflpg(z) dz, 0 <y <1

The monotone property of p(y) is obvious from the
fact po > 0. Let 0 < y < 1, then -1 < —y < 0.
Hence, we have

ply)=r ;71 pa(z)dz =7 ;'750'5172(—0.5 + 2)dz,

p(—y) = rf__ly p2(z)dz=r ;'_50.5])2(—0.5 —z)dz.
Therefore, p(y) = p(—y). O

2. Salt-and-pepper noise.
Similarly, for the case of salt-and-pepper noise,

p(y) = (1 =711 —72)0(y) +71p2(y) +rop2(y — 1). (3)

For simplicity, in this paper we set r1 = 79. p(y)
satisfies proposition 2.

Proposition 2 p(y) = p(y+1) in (—1,0). If po(—0.5+

z) = p2(—=0.5 — 2) holds for all z, then we have
p(y) =p(=y).

Proof Similar to the proof of proposition 1. ad

To better understand the above propositions, we
give a specific example in Fig. 1, which contains the
PDF's of the two kinds of impulse noise. In this experi-
ment, we first add a Gaussian blur, with standard devi-
ation be 3.0, to the color “lenna” image f (see Fig. 2),
where the normalized histogram of —k * f is plotted
in Fig. 1(a). Then the blurred image k * f is contam-
inated with random-valued noise and salt-and-pepper
noise with density 60%, respectively. The normalized
histogram of g — k % f for the two cases are plotted
in Fig. 1(b) and Fig. 1(c). One could find the normal-
ized histograms of g — k * f is approximately symmetric
around 0. It is understandable because the histogram of
—k « f in Fig. 1(a) is approximately symmetric around

—0.5. We have tested lots of natural images and most of
them seem to have this approximately symmetric prop-
erty.

As is known in [12-15] that L'-based fidelity out-
performs the L2-based one in removing impulse noise.
In the following, we will interpret this by examining the
approximations to the PDF of noise p(y) in Fig. 2. For
grey scale image, the maximum likelihood estimation of
the additive white Gaussian noise n ~ N(0,0?) leads
to the L? norm based fidelity term

1
Sllg— k= £1,

while the estimation for a two-sided exponential distri-
bution would result in the L! norm based fidelity term

llg — & * fll1.

These two special functions, Gaussian and two-sided
exponential PDF's, can be considered as two different
approximations to p(y). From the example in Fig. 1, we
can see that the two-sided exponential function has a
slightly better approximation to the true PDF than the
Gaussian approximation. That is why L! norm based
fidelity could remove impulse noise more efficiently than
the L2 based one.

Based on (2), (3) and the above experiment obser-
vations, the PDF of impulse noise p(y) can be approx-
imated by

p(y) = p(y; ©) = Zazpl(y; 01), (4)
=1

where ® = {aq, a9, 61,02} is a parameter set such that
Zle ap =1, and p;(y; 6;) is a density function param-
eterized by #;. Based on the symmetric property dis-
cussed in the previous paragraphs, we can view p;(y; 6;)
as a Gaussian or two-sided exponential PDF i.e.,

1 y2
2
;07) = expl—=—5 )
pi(y;op) 2o p{ 20?} (5)
or
) |y
pi(y;o;) = 72012 eXp{_aTQ . (6)

Remark: We do not directly use (2) and (3) as the
PDFs of noise but choose their approximations. This is
because the cost functionals derived from (2) and (3)
are extremely complex and difficult to minimize. On the
other hand, numerical experimental results show that
both ¢ and f;il p2(z) dz could be well approximated by
two Gaussian (or two-sided exponential) functions by
choosing a small 0% or a large o respectively. Mean-
while, the corresponding cost functionals (ref. section
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(a) Normalized histogram of —k x f, i.e. p2(y).
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(c) Salt-and-pepper noise with r1 = ro = 0.3.

Fig. 1 Different approximations to p(y) for random-valued noise and salt-and-pepper noise, respectively. Note that all the scale of y
axis is logarithmic and we plot these figures by MATLAB function “semilogy”.

4) resulting from the two Gaussian and two-sided ex-
ponential functions are quadratic or half-quadratic and
are easy to solve. Theoretically speaking, it is known
that the Delta function can be well approximated by
Gaussian function, namely,

1 Y2
lim ——— exp{——-} =4
Jim, oy xPl=g5t =0

holds in the sense of distributions. However, we have not
fully explored the connections between fyyflpg(z) dz
and exponential types functions, which is left for fu-
ture research.

Of course, there are many choices for such approx-
imation, e.g., mixtures of Gaussian/uniform, two-sided
exponential /uniform, two-sided exponential/Gaussian,
etc. In this paper, we only choose Gaussian/Gaussian
and two-sided exponential/two-sided exponential mix-
tures. Others can be addressed in the same manner.

The mixture models, in fact, have better approxima-
tions to the PDF of impulse noise than others, which is

evident in Fig. 1. Unfortunately, the cost functionals
for the mixture models are difficult to optimize since
there are many parameters and a logarithm of the sum.
In the next section, we will discuss how to overcome

this difficulty.

3 Parameters Estimation via the EM
Algorithm

In this section, we discuss how to estimate the param-
eters of noise for any given data n.

The maximum likelihood estimator is usually em-
ployed for such kind of problem. Let M = 3mimy — 1
and N/, i = 0,1,2,---, M are random variables. Sup-
pose all these random variables are independent and
identically distributed with PDF p(n, ; ®), where © is
an unknown parameter set. Thus N' = (No, N7, -+, Nay)



is a random vector with PDF

M
= H p(ny; ©)
i'=0
We can view the noise n = (ng,ny,- - ,nar) is a realiza-
tion of N. Then the MLE of ® given n is a parameter
©* that maximizes the likelihood function or the log-
likelihood function

[(®;n) =

lan

v i'=0 (7)
= Z Inp(n,; ®)

i'=0

Inp(n; O)

Actually, in the above equation p(n, ; ®) is a discretiza-
tion of (4). So the likelihood function becomes

M 2
= Z analpl(n

i'=0 =1

which is difficult to optimize because it contains the
logarithm of the sum. To address this difficulty, we re-
sort to EM algorithm, an efficient algorithm for mixture
model parameter estimation. The basic idea of EM al-
gorithm is that: instead of maximizing [(®;n), we turn
to maximize another function H(®), which can be more
easily maximized with the property that the values of
{(®;n) do not decrease in each step of the iteration.
Consequently, the main task is how to construct such a
function H(®). We will review this [23,22,9,24] in the
next paragraph.

Generally speaking, we do not know in advance that
a pixel in the image whether is corrupted by noise or

not, especially when the image is contaminated by random- H

valued noise. Here we introduce a random variable C;/
to indicate the pixel at location i’ is noise or not, to be
more exact, if g is a noise free pixel, then let C;; =1,
else if g, is contaminated by noise, we let C;, = 2.
Namely, if we denote &; = {0}, Gy = R\{0} and C =
(Co,Cq, -+ ,Cpr), then we have C;; = 1 when n,y € &,
and C;; =2 when n; € Ga.

We consider N as the observed variable or incom-
plete variable and Z = (N, C) as the complete variable,
where C is the hidden variable. Next, let p(n, c; ®),
be the PDFs of Z and C respectively. Then the condi-
tional PDF of ¢ given n is

p(n,c;O)

e ®)
p(n; ©)

Thus the log-likelihood function (7) for © given n be-

comes

[(®;n)

p(cin; ©) =

= Inp(n; ©)
=Inp(n,c;©) — Inp(c/n; ©) (9)
=1(®;n,c) —(O;c|n).

p(c; ®)

The second equality follows by equation (8) and the
last one follows from the definition of the log-likelihood
function.

Given parameter set @Y, where v refers to an iter-
ation variable, we have

1(®;n)
=1(©;n) > p(c|n; ©")

= > U(®;n)p(c|n; ©")

2 S 1@sn, c)p(cin; ©7) —
£ H(®;0") - J(O;0V).

> 1(©;cln)p(cln; ©)

(10)

In the above equation, )" _ represents the sum over all
the possible values of ¢ and thus ) _p(c/n; ®”) = 1.

With these notations, one can get the following the-
orem.

Theorem 1 For everyv, if H(@"1!;0") > H(OV; @),
then [(©@Y*1;n) > 1(©Y;n).

The proof of this theorem can be found in [9]. For com-

pleteness, we give its proof in the Appendix (A. 2).
Consequently, the EM algorithm could be summa-

rized as following:

EM algorithm.

Given the observed data n and initial guess parameter

set @Y, for v =10,1,2,---, do

Step 1 (E-step). Compute

(©;0") Zlnp n,c; ©)p(c/n; O). (11)

Step 2 (M-step). Find ®“*!, such that
©""! = argmax H(©;0"). (12)
e

The crucial procedure of EM algorithm is to calcu-
late H(©®; ©®"). Here we consider mixture model (4), by
using Bayes’s rule, p(c;/|n;/; ©Y), p(ny, cy; ©) in equa-

i Gl
tion (11) becomes
pleyIny: @) = XD 62 O7)
p(ni’ ’ GV)
v, (ny;07) (13)
2321 o ps (ni’ ; 0?) ,

and
p(ny,cy;©) = pley )p(ny [y ; ©)

= ac;pc; (ni/ ) ec:>



Plugging (13) and (14) into equation (11) and simpli-
fying the expression, then

H(©;0") XQ:Zw

“V1nay
S0 (15)
+ Z Zw “Yinpi(n,; 01),
=1 i/ —o
where © = {a1, s, 01,02} and
wl(il; o) = o/pi(ny;07) (16)

. .
Yoo alp(ng;0Y)

More details about calculating H(®;®") could be
found in [22]. Comparing (13) and (16), we can get that
wl(i/; ©®%) is a priori probability of n, € &;. This func-
tion is very important for our later approach because
it could discriminate between pixels with only blur and
noise.

4 The Proposed Variational Model

Now we incorporate the features of variational regular-
ization methods and EM algorithm and present a new
model that can deblur color images with impulse noise.
Let us begin with some studies regarding the connec-
tions between the probability models and the regular-
ization methods. Recall that the degraded color image
g could be modeled by the discrete version

gy = (kxf)y +ny, (17)

where i = Tmims + jmq + 4. For all i,, assume G/,
Fy, N, are three different random variables, and g,
is a realization of G,;. Then the MAP estimator with
respect to f is given by

f* = argmax p(f|g) = argmin — Inp(f|g), (18)
£ £

where

f= (anfla"’ 7fM)a g = (907917"' 7gM)

If each f;/ is conditionally independent and identically-
distributed, we can get

f|g Hpgz i’ z).

i'=0 p

Note that p(g,) in the above equation is a fixed
constant since g,/ is given by the observed image. Hence,
the problem (18) becomes

M M
= Inplgylfi) = Y Inp(fir)

f* = argmin
f o .
i =0 i’ =0

(19)

For Gaussian noise, Ny ~ N(0,0?), we usually sup-
pose 02 is a known constant. Under these conditions,
the first term of (19) in the continuous setting leads to
the following L2-based fidelity term
1 2
Sllg— (s f)3+er
where ¢; is a constant. On the other hand, the assump-
tion of p(f;) would lead to a smooth term or called
regularization term. For example, the assumption

2

Af3
p(fy) o exp{~L}

leads to a channel-by-channel Tikhonov regularization
term

A
Shiel 3

As for impulse noise, we assume the noisy data n,, =
gy — (k=f), approximately follows a distribution with
the mixture PDF (4). Inspired by EM algorithm to it-
eratively solve a series of minimization problems, we
can establish a new model according to (19), theorem
1, (15) and (4):

(1 @) = argmin E(f, ©; v v “),
£,0

where E(f, ©; wi}”)

2

M
=— Z Z wﬁ;" Inp(g; — (kx£),:;0;)

=1 ;' =
> ol (20)

- Z Z wi}y Ina; + AR(f).

=1 i'=0
In the above equation,
Lo opi(gy — (k*£);:07)

wh = — (21)
Rl atplgy — (kx£v)00)

Z LS
ag =1—ay, R(f) is a regularization term and A > 0 is
a parameter.
In this paper, we do not focus on the smoothing
term R(f). For computational convenience, we utilize
the vectorial total variation (VTV) regularization

VTV(f) = / V£ dx,
2

which can be found in [25]. Other regularizers [26,27]
such as the Beltrami regularizer, Mumford-Shah seg-
mentation functional [28,14,15], and nonlocal regular-
ization operator [29,30] can also be employed for this
problem.



Remark: The fidelity term in the proposed method do
not couple the rgb channels since the impulse noise is
usually independent of channels. However, it is easy to
extend this to the coupling version by using the three
dimensions PDF and considering a better channels cou-
pled regularization such as Beltrami regularizer.

Starting from an initial guess f°, ®°, we compute a
series of minimizers

f17@17f2’®2’-~- 7f1/+1’®y+1,_”

such that

(£, @) = argmin E(f, ©;f”, @").

£,0
Then plugging (5) or (6) into (20), ignoring any con-
stant term and using the notations which is defined in
section 2.1, E(f,®;f,®") has the following expres-
sions:

1. TVAWL? model. The cost functional E(f, ®; f*, @)
is defined by

2 2
1§:Hk*f—ﬂbww
=1

2 (22)
1 Ly 2
+§l_zl <w", 1> (Inoj —2lna),
where as =1 — aq, and
af p{ (k*f”—g)2}
xpd—r S/
v 2 2\v
wl v 2(0.1) (Ul ) (23)
al (kx £V — g)?
Z yeXp o 2\v
(o¢) 2(02)

2. TVAWL! model. E(f, ®;f", ®") is given by

2
kxf— whv
Z—H f”l’ : +>\/|Vf\dx
— 0
l_12 (24)

Jrz <wh 1> (Ino? —Inw),
=1

where ay =1 — a1, and

af eXp{_Tk*f”—gT}
(07)"

(25)

Some symbols are needed to interpret:

© = {ay,0%,03}, where ay, 0} are variables; v is the it-
eration number; w'” andw?" are two known weighting
vector-valued functions given the v-th iterative values
f¥ and OV.

The main difference between TVAWL? and TVAWL!
lies in the norm used in the first term of the cost func-
tional. As shown in the preceding discussion and mo-
tivation in section 2.2, these are actually the results of
different approximations to the PDF of noise p(y).

The superiority of model (22)/(24) is that the intro-
duction of the weighting functions w! can automatically
determine deblurring or denoising at each pixel. More
specifically, if we let § = gw! and g = gw?, then g
represents a noise free blurred image while é stands for
random noise. Our model can make the restoration g
less smooth thanks to different values of o7. That is
to say, the local behaviors of denoising and deblurring
could be adjusted by weighting functions w' and the
statistical parameters o7, though a fixed global regu-
larization term is utilized in our model. In the next sec-
tion, we will present an experiment to further discuss
the role of these two weighting functions.

5 Numerical Methods and Experimental
Results

5.1 Algorithms

The simple gradient descent method can be employed
to solve our problem, but it will be very slow. The main
difficulty of solving the proposed minimization problem
is the non-differentiability of the regularization term
VTV(f) and L! fidelity term in TVAWL!. In recent
years, many efficient algorithms have appeared, i.e.,
graph cuts [31], dual methods [32,33], split Bregman
method [34], augmented Lagrangian method [35], al-
ternating direction method of multipliers [36], Douglas-
Rachford splitting [37,38]. Most of these algorithms
are equivalent. More connections among them could be
found in [35-37]. Here, we apply Chambolle’s projection
algorithm, which is a dual method proposed by Cham-
bolle in [33] and then extended to vector-valued images
by Bresson et al. in [25], to solve TVAWL? model. For
TVAWL! problem, we resort to the split Bregman it-
eration. We want to mention that the proposed model
can also be solved by other algorithms with some minor
modifications.

First, Let us discuss the algorithm for TVAWLZ. To

solve (22) more efficiently, we add an auxiliary varialbe
u and get an approximate problem:

min E(f,u, ©), (26)

f,u,



where E(f,u, ©) is defined by

[|k*u — gszlu

N =

ﬁ||f_u|\§ +>\/|Vf|dx

wh’. 1> (1nal —2lnay),

5
gD

17> 1 is a penalty parameter,

and oo = 1 — . More details and theoretical results

about the above split scheme can be found in [16,25].
By applying the alternating minimization algorithm,

(26) splits into three subproblems:

subproblem 1.

f'+t! = argmin E(f,u”, ®")
£
(28)
:argmin{?27||f—u”||§+)\/|Vfdx}7
£

subproblem 2.

u’t = argmin E(f**1 u, ©)
u

|k*u g| Wl
. Z' '2 - (29)
= arg min ,
*||f”+1— ||2

subproblem 3.

Ot = argmin E(f**1 ut!, @)
)
1 e xu*t —glff 1
52 =
= arg min =1,
) 1

+§l_zl <wh” 1> (Ino? —2Inay)
(30)

These three subproblems are all easy to solve: sub-
problem 1 (28) is the vectorial ROF model and we can
solve it by Chambolle’s projection algorithm [33,25];
the cost functional in (29) is quadratic with respect to
u, so the associated Euler-Lagrange equation

2 L,y 2 l,v

- wh - wh

ks ((k * W) Z (02)V>+T]u = kx (g Z (U2>V>+77fv+1
1=1 1 1=1 1

(31)

is a positive symmetric definite linear system and the
conjugate gradient (CG) method can be employed to

get an approximated solution, where k is the conjugate
function of k; finally, @1 in (30) can be given explic-
itly by

pp1 < whv 1>

of 310 ay™ =1-ar", (32)
[k w g2
(o)t = e (33)
<whv 1 >

Until now, we have come up with an algorithm to solve
TVAWL2. Algorithm 1.

Choose initial values f® = u® = 0,

0% = {af = 05,09 = 0.5,(c})° = 1074, (63)° = 1.0},
and calculate w' (I = 1,2) by equation (27).

Set v =0 do

step 1. Update f**! from (28) by Chambolle’s projec-
tion inner iteration.

step 2. If [|[f*T — £¥||
Else, go to the next step.
step 3. Solve u”*! from (31) by CG inner iteration.
step 4. Update ®”*! by equations (32), (33).

step 5. Calculate w'”*! by equation (27).

step 6. v =v + 1.

Based on some experimental experiences, we let the
number of Chambolle’s projection inner iteration to
be 1 and end the CG inner iteration when [[u***! —
u"||o < 1073, where v is the number of the CG iter-
ation.

Now let us move on to solving TVAWL! problem.
Other than the former model, a weighting L' norm in
TVAWL! makes this problem more difficult to optimize.
We mention that Chambolle’s projection algorithm can
still be used, but here we employ the split Bregman
method [34] to solve it.

Similarly, we first add two auxiliary function de

< 1072, end the algorithm.

R3,d € R2*3 and get the following approximated cost
functional to (24):

SCIREINETRS ld — (k+f —g)
Z 2 EZ o)

=1

||2Wl v

+Z <w 1> (Ino? — Inay) +)\/|d|dx (34)

I=1 _
772
+2)d - Vi3,

where 71,172 > 1 are two penalty parameters, as; =
1 — o and
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Following [34], we add two Bregman variables b €

RB,B € R2*3 to (34), then the split Bregman scheme
for our problem becomes

~ ~v+l ~ =
(frti dvttd 0" = argmin E(f,d,d, ©),

f,&ﬁ,@
Eu+1 — Bl/ + k % fy+1 —g— av+17
~v+1 ~v ~v+1
b =b +Vftl —d
where
E(f,d,d,®) =

inénl,wm @iud (hf—g)—
1=1 af 2 (o?)¥

=1

bUHQWZ v

2
—|—Z <wh” 1> (Ino? —Inay)
=1

+>\/|a|dx.

+2(ld-VE-b |3

Applying the alternating minimization algorithm,
the above minimization problem can be split into the
following subproblems:

~v

subproblem 1. f**! = argmin E(f,d”,d ,0"),
£

subproblem 2. artt = argmin F(f' T &, d ,0Y),

d
v+l ~ =
subproblem 3. d = argmin E(f't d" Tt d, @),
d
~v+1
subproblem 4. ©”*! = argmin E(f**!,d"*'.d ,©).
e

These four subproblems are all easy to optimize.
The corresponding Euler-Lagrange equation of sub-
problem 1

2
W 772
—Nf
< ; (‘712 > m

2 174
k * ((g—f)” +&V)Z (Zf)”) + WV

=1 n

b -d)

(36)

is still linear and it can be approximately solved by

many solvers (e.g. CG, algebraic multigrid (AMG) solver).

If we use circular/Neumann boundary condition for the
image, then the convolution can be calculated by the
fast Fourier transform([9] (FFT) /discrete cosine trans-
formation [39] (DCT).

The subproblem 2 can be done explicitly by

- ~ 1
d"*! = shrink o (k « 't — g4+ b, 77) . (37)
1

Here shrinko : R? x R? — R3 is an operator which has
the expression

[shrink o (y,2)], = I max{|y,| — zr,0}, 7=0,1,2.
Y

[+

A simple proof could be found in the Appendix A. 3.
Similarly, the solution of subproblem 3 is given by

~v+1

d = shrink <Vf"+1 +b, A) , (38)
2

and shrink : R2%3 x R — R2*3 is an operator such that

shrink(x, z) = max{|x\ z,0}.

Finally, the optimality criteria for @“*1 is

1,v
alll+1 _ <vxg)’|ﬂ,|1>7 angl —1— alll+1’
18744, i (39)
(O’ )v+1 _ 1,w
i = Twhvis

As a result, we obtain an algorithm for TVAWL!:

Algorithm 2.
~0

Choose initial values f° = g, b0 =d° = 0, E =d =
0, @O—{a1—05a2—05(01) — 104, (02)
1.0}, and calculate w'? (I = 1,2.) by equation (35).
Set v =0 do
step 1. Find f**! by solving (36) using CG.
step 2. If [|[f*T! — V|| < 1072, end the algorithm.
Else, go to the next step.
step 3. Update d”+1 by (37).

+

Update d by (38).

Update ®”*! by equation (39).
Calculate w¥*! by equation (35)
b’ =b¥ + kx frHl — g — dv Tl
~v+1 ~v ~v+1

step 8. b =b +Vftl_d
step 9. v =v + 1, go to step 1.

step 4.
step 5.
step 6.
step 7.

5.2 Experimental results

In order to compare with other methods, the peak signal-
to-noise ratio,

3m1m2
PSNR = 10log g 75 TS

is taken to measure the improvement of image quality,
where I is the mj X mgo original image and f is the
corresponding recovered result. The original images of
size 256 x 256 for our synthetic experiments are shown
in Fig. 2

Some parameters which occurred in our models are
selected as follows: the regularization parameter A = 5,
the penalty parameters n = 100,77 = 250,75 = 100;
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Fig. 2 The original images I for the synthetic experiments.

the initial values (¢7)? = 10~ for salt-and-pepper noise

and (02)° =5 x 1072 for random-valued noise. A point
worth mentioning is that we do not need to change any
parameter values in all the following experiments ac-
cording to different levels of noise since the parameters
Jf, which indicate the levels of noise, can balance the
behaviors between denoising and deblurring.

Recently, the FTVd algorithm [16] is regarded as
one of the most efficient methods to solve TVL! prob-
lem

min VIV (£) + il £ — g[1.

And we will compare our method with other models
using FTVd.

Generally speaking, images with heavy noise can be
hardly restored because additive noise results in a great
loss of information. But for heavy impulse noise, good
reconstruction would be expected. Impulse noise with
high level makes the image looks heavily blurry and
noise-contaminated, however there are still some pixels
with only blur. As mentioned earlier, the two adaptively
weighting vectorial functions w'! in our method can de-
tect them and we can still obtain a good reconstruction.

In order to better interpret the role of the weighting
function w', we propose an experiment in Fig.3: adding
same level of salt-and-pepper noise to the same blurred
image with different spatial distribution. In the first
case, the noise is added such that there is no useful in-
formation in the right part of the image (see Fig.3(a)),
while in the second case, the noise is added randomly
to the image (see Fig.3(f)). The reconstructions with
the existing variational method such as TVL! and our
modified method TVAWL! are shown in the second
and third column, respectively. Note that the proposed
model could not do better than TVL' in the left half
image for the first case. This is because one could choose
different p for the two parts of the image in TVL! to get
the similar results as ours. However, it would fail in the
second case because the spatial distribution of noise is
random. The advantage of our models is evident in the
second case, since even in this case, noise could be still
detected by the weighting functions w'. The estimated

noise free image g = gw! and noise E = gw? in our
models are displayed in the last two columns.

Now let us compare the proposed method with the
L! fidelity term based methods [12,14-18]. We test our
algorithm and FTVd with a variety of blurs and differ-
ent levels of impulse noise.

Fig. 4 shows the comparison of the reconstructed re-
sults obtained by TVL! with FTVd and our method for
the case of salt-and-pepper noise. As is well known that
the parameter p is very important for TVL! model, so
we test some values (including the suggested value in
FTVds) and choose the result with the highest PSNR
for comparison. In this figure, the Gaussian blurred
(o = 2.0) images with different levels of salt-and-pepper
noise are shown in the first column, while the levels of
noise are r; + o = 30%, 60%, 80%, 90%, respectively,
and the results obtained by FTVd and ours could be
found in the last three columns. As can be seen from
Fig. 4, there is no significant difference between the
three methods in the case of low level noise (e.g. 30%).
When the noise level is increased, our approach pro-
duce much better results than TVL!. The correspond-
ing PSNR values (the measure of image quality) and
CPU time are summarized in Table 1. High PSNR val-
ues and similar CPU time can be seen for the proposed
model.

For salt-and-pepper noise, the TVAWL' model seems
to have a better performance than TVAWL2. In gen-
eral, it is more difficult to detect random-valued noise
than salt-and-pepper noise. Our method can recover
images from high-density random-valued noise and esti-
mate the noise. Results of restoring out-of-focus blurred
image (radius=7) with random-valued noise are illus-
trated in Fig.5. We showed the estimated noise free im-
ages and the estimated noise in the last two columns of
Fig.5.

The method discussed in this paper can also be ap-
plied to image denoising and inpainting. The only dif-
ference with deblurring is that the blur kernel £ in de-
noising/inpainting should be the delta function.

Fig.6 shows some results of denoising with TVAWL!.
Here we compare our results with those got from me-
dian filter. The corresponding PSNR values and CPU
time are shown in Table 1.

A result of inpainting with the proposed method
is illustrated in Fig.7. Unlike other inpainting meth-
ods, when the inpainting area satisfy certain conditions,
such as the inpainting areas are corrupted by an impul-
sive process, we do not need to set the inpainting mask
for the proposed method because the mask can be es-
timated by the weighting functions.

Recently, Cai et al. [17,18] proposed a two-phase
method to deblur grey scale image with impulse noise
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(b) TVLY, = 16

5y [

|

(8) TVL!, i =8

(f) g

1 2

(c) proposed AWTVL!

(h) proposed AWTVL!

1

(i) & = gw?

(i) g =gw

Fig. 3 Explaining the role of the weighting functions w', w=. (a),(f) blurred images corrupted by the same noise with different spatial
distributions; (b),(g) restored by FTVd;(c),(h) restored by the proposed method; (d),(i) the estimated noise free image; (e),(j) the

estimated noise.

Table 1 PSNR (dB) values and CPU time (s) in the experiments (Fig. 4~Fig. 6).

PSNR (dB) CPU time (s)

Observed  Median filter TVL! TVAWL2? TVAWL! Median filter ~TVL! TVAWL2 TVAWL!
Fig.4(a) - 28.84 29.82 30.21 - 15.66 14.77 16.89
Fig.4(e) - 27.44 29.75 30.01 - 17.97 16.81 17.87
Fig.4(i) - 23.55 28.47 29.39 - 27.16 24.90 25.20
Fig.4(m) - 19.87 23.57 27.92 - 43.53 26.23 28.22
Fig.5(a) - 25.13 - 28.61 - 26.47 - 38.87
Fig.5(f) - 21.86 - 26.96 - 31.83 - 43.31
Fig.6(a) 30.44 - - 41.28 0.095 - - 3.12
Fig.6(b) 23.61 - - 35.66 0.34 - - 4.38
Fig.6(c) 18.01 - - 29.09 0.42 - - 5.41
Fig.6(d) 6.77 - - 21.65 0.60 - - 5.86

and obtained good results. With our notations, the two-
phase method actually minimizes the following func-
tional

1k f = gllix + BR(S),

where R(f) is a regularization term, 5 > 0 is a param-
eter and the characteristic function y is estimated by
the median-type filters, which is determined by

[0, (k* f)(x) is degraded by noise,
X(z) = { 1, else.

Now we compare experimental results of the two-phase
method and our models. It appears that the presented
algorithms have the similar results to the two-phase
method for salt-and-pepper noise. An interpretation is
given as follows: in TVAWL! model (24), if we fix w =

X, w>¥ = 0 and let all the parameters al,alz be con-
stants, then it is equivalent to the two-phase method;
in fact, w'” can be considered as a smooth version of
X, and both w” and y play the same role of adjusting
the fidelity term, but in different ways— x eliminates
the likely noisy pixels from the fidelity term and w'”
gives different weights to the noisy and only blurred
pixels; moreover, salt-and-pepper noise is easy to de-
tect and thus both two methods can produce good re-
constructions. However, there is no good detector for
random-valued noise with high noise ratio. Compared
with the two-phase method, the main superiority of our
approach is that it can provide much better restorations
for the case of high density random-valued noise. This is
because the noise detection and deblurring in the pro-
posed algorithm are alternately implemented and the
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(b) TVLY, =16

(a) 30% salt-and-pepper noise

(e) 60% salt-and-pepper noise (f) TVLY, u=6

i) 80% salt-and-pepper noise i) TVLY, p=2
15

(n) TVLY, p=15

(m) 90%salt-and-pepper noise

(c) proposed TVAWL?2

(d) proposed TVAWL!

(k) proposed TVAWL?

(o) proposed TVAWL?

(p) proposed TVAWL!

Fig. 4 Comparison. First column: g, blurred (Gaussian, o = 2.0) images corrupted by different levels (r; + r2 =30%,60%,80%,90%)
salt-and-pepper noise. Second column: restored by TVL! with FTVd. Third column: restorations with TVAWL2. Fourth column:

restorations with TVAWL!

random-valued noise can be better identified. So, in the
following, more attentions will be paid to the random-
valued noise.

To be fair, we test our algorithms with grey scale
images and the ending conditions of the CG solver in
the two-phase method and our algorithms are all set to

be
LF = e

[Lf ]2
In the experiments, we first add some out of focus blur
with radius 7 to the “lenna” grey scale image, which is
then further corrupted by adding different levels random-
valued noise.

<1072,
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(b) TVLY, =13

(a) 35% random-value

noise

(g) TVL17 =06

(f) 63%

noise

random-value

(c) proposed TVAWL!

(h) proposed TVAWTL! (i) g = gw!

(i) g=gw

Fig. 5 Comparison. (a),(f) the blurred (out-of-focus blur, radius=7) image with random-valued noise ,r = 35%, 65%; (b),(g) restoration
with FTVd; (c),(h) restoration with the proposed method; (d),(i) the estimated noise free image g = gw!; (e),(j) the estimated noise
z 2

The results of recovering blurred images with random-
valued noise by the two-phase method [18] and our al-
gorithm are shown in Fig. 8 and the PSNR values and
corresponding CPU time are summerized in Table 2.
We can see from the figure and table that our method
is much better than the two-phase method. As is re-
ported in [17,18], the two-phase method can not work
efficiently if the ratio of random-valued noise exceeds
55%, but our method can still give good results even if
the ratio is as high as 75%.

Remark: In this experiment, the ending condition
of CG in our method is more rigorous than those of
the previous ones, thus it is more CPU time-consuming
than the previous implementations.

From all the above experiments, one can conclude
that the proposed method is superior than other models
in recovering images from impulse noise.

6 Conclusion and Discussion

We proposed a novel approach of reconstructing color
images with blur and impulse noise. The main idea is
that at each pixel, the impulse noise is viewed as a real-
ization of the sum of two Gaussian or two two-sided ex-
ponential PDFs, then we formulate a functional which
contains two adaptively weighting functions and some
statistical control parameters. Compared with the ex-
isting variational methods, the introduced weighting
functions can identify impulse noise more efficiently,

and the algorithm could locally adjust denoising and
deblurring by the introduced parameters of PDFs and
these weighting functions. Our experimental results had
shown that the quality of the restored images by the
proposed method are better than the existing models
such as TVL! (both under random-valued noise and
salt-and-pepper noise) and two-phase method [18] (un-
der random-valued noise). Our method can give good
restorations for random-valued noise with noise ration
as high as 75%, which can not be well handled by the
existing variational methods.

In section 5 we have shown the connections between
the proposed algorithms and the two-phase method. In
fact, the model in this study is an extension of the
traditional ones. For example, if a3 = a3 = 0.5 and
0? = 03 are fixed constants, then the weighting func-
tions w! = w? = 0.5. In this case, the cost functional in
our method, after ignoring some constant terms, would
reduce to the existing ones.

Our method is based on TV regularization and EM
algorithm, and it is well known that EM algorithm has a
local convergence. Thus, the proposed algorithms partly
depend on the initial value @°. It is a good idea to set
the initial value w*? to the results of the first phase
in two-phase method [17-19]. In addition, we choose
an approximation to p(y) in E.q. (2) to avoid imple-
mental difficulties and obtain some good experimental
result. However, a natural alternative is to consider (2)
directly, and how to address this difficulty is our future
work directions.
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median filter,9 X 9 window

(i) proposed TVAWL! (§) proposed TVAWL! (k) proposed TVAWL! (1) proposed TVAWL!

Fig. 6 Some results of denoising. First row: noisy image. Second row: denoising with MATLAB function medfilt2 channel by channel.
Third row: denoising with the proposed method.

(b) TVAWL! output, CPU time: 4.63s (¢) The estimated mask E = gw?

Fig. 7 Automatic inpainting.
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(e) [18],8 = 0.005 (£) [18],8 = 0.02

(i) proposed (j) proposed

(a) 40% random-valued noise (b) 55% random-valued noise

(¢) 65% random-valued noise (d) 75% random-valued noise

(k) proposed (1) proposed

Fig. 8 Some restorations of two-phase method [18] and the proposed model under random-valued noise. First row: noisy images.
Second row: restorations with two-phase method. Third row: restorations with TVAWL?2.

Table 2 Comparing with PSNR values and CPU time of two-phase method [18] and TVAWL? under random-valued noise (Fig. 8).

PSNR  (dB) CPU time  (s)
Noise density r ~ 40%  55%  65%  75% 10% 55% 65%  75%
Two-phase[18]  29.37  27.14 23.83 23.67 64.3 747 1172 1322
TVAWL? 3232 30.34 29.11 25.48 39.3 46.9 65.7  95.9

The proposed method can be directly extended to
blind deblurring for impulse noise and also can be ex-
tended to nonlocal version. We have noticed that the
weighting functions w'” play a role of classifying the
impulse noise according to the different variances o7,
which is similar to the region based image segmenta-
tion in which the pixels are clustered according to the
different means. Thus with the proposed framework,
many better image segmentation method such as glob-
ally convex segmentation [40] can be employed in our
method. Finally, we mention that the proposed varia-
tional framework can be applied to the regularization

term. If we assume |Vf| at each x obeys a distribu-
tion which can be approximated by the mixture model,
then one can get a regularizer which has the similar
form as Mumford-Shah functional regularization. We
do not plan to discuss much about these, which are left
for further study.
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A. 1:

Considering the following random event,

N — Y1, when B occurs,
1Y, when C occurs,

where B and C are mutually exclusive events. Accord-
ing to the equation (1), P(B) = 1—r,P(C) = r, and
we get

P(N)=P(NNB)+P(NNnCQC)
= P(B)P(N|B)+ P(C)P(N|C)
= (1—-r)P(N|B)+rP(N|C),

Let a be the realization of a random variable )3 with
PDF ps(y), then

P{N <y} = (1—r)P{Y1 < y}+rP{Da+V3 < y}. (40)

Note that ), and )3 are independent, thus following
(40), we have

p(y) = (1 =7)0(y) +r(p2 * p3)(y).
Moreover,

1,y €10,1],
0, else,

p3(y) = {

and thus

o0

(p2 % p3)(y) = /

B p2(2)ps(y — 2)dz = /y_lpg(z) dz.
A. 2:

Theorem 1 For every v, if H(©®"!;©") > H(®V; @),
then [(®@“*1;n) > [(©Y;n).

Proof

- J(©7;0") - J(O+; )

—2c(l(®";¢[n) — 1(©¥;cn))p(c|n; ©)

cln: v+1
— - S nteini )

(41)

Here the inequality is given by the convexity of function
—Inz.

S (©@"Fn) — (@Y n)
= (H(©®";8") - H(©";0)) (42)
+(J(®¥;0Y) — J(OVt;ev)) > 0.

a

Proposition 3 if d"+! =

)~

~ =V d v

E(frtl,d,d ,0") = 27” ”;wl
= (o7)”

arg min

3| g A e ) R [
2= (a7}
then
~ -1
d”*! = shrink o (k «fT — g+ bY, 77) .
1

Proof : Suppose d = (dy,dy,ds). Let z = Y (‘Zi‘y)yw

" i
and y = k * fV+1 — g + l:)V7 Wlth z = (Z0721722)7 y =
(y07y1uy2)7 then

E(d) = [[d][1. + 5 [1d - y]l5,

2 2
_ 7 m 1 — )2
= TX_%/ZTdT|d$+ 2 ;)/ZT(dT yT) dz,

OF zrd, ~

— = — +mz(d; —yr).

od; |d-|

A minimizer of E satisfies gf = 0, please note z, > 0,

T

which indicates

1 NI./
<|d~V+1| + 771) &7 = mys. (43)

If |y, | > 7711’ then taking | - | for two sides of (43), we
get

- 1

| = lyr | = —.

Take the above expression to (43), and immediately
yield

v Yr 1
&= (- ).
|y'r| m

Blse, [y,| < L,
E(d)
2 2
= Z/ZT‘JT‘dx+EZ/ZT(CE'+y72'_2J7y7')d'r
2
7'?0 7'?0
> g/szde+2;)/zT<dT+yT — 2| |y) da
s " )
> de | da + = A2+ — 2)d)d
Z/ x+2;/z<7+y7 i) da
2
it ) 2
= 2;}/z7(d7+y7)dx,

thus 2 = 0.

In summary, /! = |Z:‘ max{|y.| — n%,()}. O
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