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Abstract In this paper, a new variational framework

of restoring color images with impulse noise is pre-

sented. The novelty of this work is the introduction of

an adaptively weighting data-fidelity term in the cost

functional. The fidelity term is derived from statisti-

cal methods and contains two weighting functions as

well as some statistical control parameters of noise. This

method is based on the fact that impulse noise can be

approximated as an additive noise with probability den-

sity function (PDF) being the finite mixture model. A

Bayesian framework is then formulated in which likeli-

hood functions are given by the mixture model. Inspired

by the expectation-maximization (EM) algorithm, we

present two models with variational framework in this

study. The superiority of the proposed models is that:

the weighting functions can effectively detect the noise

in the image; with the noise information, the proposed

algorithm can automatically balance the regularity of

the restored image and the fidelity term by updating the

weighting functions and the control parameters. These

two steps ensure that one can obtain a good restoration

even though the degraded color image is contaminated

by impulse noise with large ration (90% or more). In ad-

dition, the numerical implementation of this algorithm
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is very fast by using a split algorithm. Some numerical

experimental results and comparisons with other meth-

ods are provided to show the significant effectiveness of

our approach.
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1 Introduction

Image restoration is an old and fundamental problem

in image processing, but it continues to attract the at-

tention of many researchers. The image degradation

process is often considered as a shift-invariant model.

For color images, this process could be mathematically

modeled by

g = k ∗ f + n,

where g : 
 ⊂ ℝ2 → [0, 1]3 is a vector-valued function

which represents the degraded color image, f : 
 ⊂
ℝ2 → [0, 1]3 is the original clean image, n denotes ran-

dom noise, k : ℝ2 → ℝ stands for a known blur kernel,

the symbol ∗ refers to the convolution operator and k∗f
represents k convoluting with each component of f . The

deconvolution, or image restoration, is to recover the la-

tent image f from the given observed image g, which is

an ill-posed inverse problem.

Statistical models and variational regularization meth-

ods are the most two popular techniques for image

restoration in recent years. The statistical approaches

(e.g.,[1–3]) are mainly based on maximum likelihood

estimator (MLE) and Bayesian maximum a posteriori

(MAP) method. The variational methods (e.g.,[4–6])

get a latent image by minimizing of a cost functional.

Most of these traditional image restoration literatures
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(e.g., [4,7,8]) only consider the case of blurred grey scale

images with a small amount of additive Gaussian noise.

However, in real applications, the images we ob-

tain are sometimes contaminated with blur and im-

pulse noise. Classical techniques for removing impulse

noise are mainly based on median-type filters (e.g., [10,

11]), which are very effective for noisy images but may

fail when the images are further degraded with blur.

Due to the superiority in preserving edges, some vari-

ational based methods have emerged in recent years

to deal with impulse noise. In [12,13], Nikolova et al.

proposed a variational framework for deblurring grey

scales image with impulse noise. A significant contri-

bution of their work is that some nonsmooth fidelity

terms such as L1-based fidelity terms were introduced

to remove impulse noise. Bar et al. [14] developed it

by considering different Mumford-Shah functional reg-

ularizers and they extended it to the color images in

[15]. Yang et al. [16] proposed an efficient algorithm,

FTVd (fast total variation deblurring), for TVL1 model

to deblur color images with impulse noise. Comparing

with the previous methods, their approaches could re-

move impulse noise more efficiently. However, the re-

constructions are not satisfactory when the images are

seriously degraded by blur and noise. In [17], Cai et

al. introduced a Mumford-Shah two-phase method to

deblur images with both Gaussian noise and impulse

noise. In the first step the likely noisy data identified

by a median-type filter is removed from the data set. Af-

ter that the image is reconstructed from the remaining

data entries. To implement the algorithm fastly, they in

[18] used L1−L1 minimization in the second step of the

two-phase method. Huang et al. [19] used TVL2-based

two-phase method to reconstruct images and offered a

fast alternating minimization algorithm. Experimental

results have shown that the two-phase method performs

well for salt-and-pepper noise. However, it cannot get a

satisfactory result for high density random-valued noise

because the median-type filters fails in this case. As is

shown in [17–19], the two-phase restoration result is not

good when the image is corrupted by random-valued

noise with noise ratio more than 55%. Of course, the

two-phase method cannot well handle mixed noise such

as Gaussian mixture. In [20], a statistical method is em-

ployed to recover blurred grey scale images from mixed

noisy data. Essentially, we include a L2-based weighting

fidelity term in the cost functional, which has a supe-

rior performance in removing mixed noise, especially

when the level of noise is high. In fact, it could also be

considered as an adaptive two-phase method.

In this work, we generalize our preliminary study

(GM-TV model) to vector-valued/color images with im-

pulse noise or other mixed noise, and present two new

models called TVAWL2 and TVAWL1 (total variation

based adaptively weighting L2 / L1 method). These two

models can restore blurred color images in the pres-

ence of high density impulse noise (with 70% density

or more). The approach is formulated on the fact that

probability density function (PDF) of impulse noise

can be approximated as an additive noise with mixed

Gaussian or two-sided exponential distributions. In con-

trast with existing variational models, a new adaptively

weighting fidelity term is introduced in the proposed

cost functional. Noise could be automatically detected

by the weighting functions, so our approach can obtain

an impressive reconstruction even though the image is

corrupted by high density impulse noise. In addition, we

introduce some control parameters to the fidelity term,

which make the regularization parameter in the pro-

posed models less sensitive than that of others. More-

over, in this study, all the proposed models are solved

by splitting schemes, which could significantly speed up

the numerical implementation process.

The rest of the paper is organized as follows: in sec-

tion 2 we first give some basic notations which is used in

this paper, then we introduce the impulse noise model

and some approximations to its PDF; the expectation-

maximization (EM) algorithm which is used to esti-

mate the parameters of the approximated PDF is re-

viewed in section 3; in section 4, the proposed TVAWL2

and TVAWL1 models are described; section 5 contains

some details about the implementation of the algorithm

and experimental results; finally, we summarize our ap-

proach and conclude the paper in section 6.

2 Basic Notation and Motivation

2.1 Notation and Definition

Throughout this paper, we use boldface type (e.g. f) for

vectors or vector-valued functions. To simplify repre-

sentations, we introduce here the notations used through-

out the paper.

Functions:

p, p1, p2 : ℝ→ ℝ+,which always denote PDF.

f� , g� , w� : 
 ⊂ ℝ2 → [0, 1], � = 0, 1, 2.

f ,g,w : 
 ⊂ ℝ2 → [0, 1]3,

d0,d1,d2 : 
 ⊂ ℝ2 → ℝ2,

d : 
 ⊂ ℝ2 → ℝ2×3,

f = (f0, f1, f2)T,g = (g0, g1, g2)T,

w = (w0, w1, w2)T,d = (d0,d1,d2).
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Inner products and norms:

< f ,g >=

2∑
�=0

< f� , g� >=

2∑
�=0

∫



f�g� dx,

< f ,g >w=

2∑
�=0

< w�f� , g� >=

2∑
�=0

∫



w�f�g� dx,

∣∣f ∣∣22 =< f , f >=

2∑
�=0

∫



f2� dx,

∣∣f ∣∣22,w =< f , f >w=

2∑
�=0

∫



w�f
2
� dx,

∣∣f ∣∣1 =

2∑
�=0

∫



∣f� ∣dx,

∣∣f ∣∣1,w =

2∑
�=0

∫



w� ∣f� ∣dx,

∣f ∣ =
√
f20 + f21 + f22 ,

∣d∣ =
√
∣d0∣2 + ∣d1∣2 + ∣d2∣2.

Operators:

∇f = (∇f0,∇f1,∇f2),

△f = (△f0,△f1,△f2)T,

∇ ⋅ d = (∇ ⋅ d0,∇ ⋅ d1,∇ ⋅ d2)T,

fg ≜ (f0g0, f1g1, f2g2)T,

f2 ≜ (f20 , f
2
1 , f

2
2 )T,

f

g
≜ (

f0
g0
,
f1
g1
,
f2
g2

)T,

p(f) ≜ (p(f0), p(f1), p(f2))T,

†f† = (∣f0∣, ∣f1∣, ∣f2∣)T.

Discretization:

let fi,j,� , 0 ⩽ i ⩽ m1 − 1, 0 ⩽ j ⩽ m2 − 1 denote the

discretization of f� , � = 0, 1, 2. We also write fi,j,� in a

vector form in which the i
′
-th element fi′ is fi,j,� with

i
′

= i + jm1 + �m1m2. These will be used extensively

in the later sections.

2.2 Impulse Noise Model and Some Approximations to

Its PDF

Two common types of impulse noise are random-valued

noise and salt-and-pepper noise. Let the noise ratio be

r. At each pixel the image intensity of the noisy image

remains the same with probability 1− r and is changed

to a uniformly distributed random number with prob-

ability r, which is referred to as random-valued noise.

Salt-and-pepper noise has a similar formulation except

that the changed pixel intensities have only two possible

values with probability r1 and r2 respectively. Mathe-

matically, the process of image degradation with im-

pulse noise can be described as

gi,j,� = T[(k ∗ f)i,j,� ],

where T is an operator which represents the impulsive

process. Thus for random-valued noise,

T[(k ∗ f)i,j,� ] =

{
(k ∗ f)i,j,� , with probability 1− r,

a, with probability r.

In the above equation a is a random number which is

uniformly distributed in [0,1]. Similarly, the salt-and-

pepper noisy image is given by

T[(k∗f)i,j,� ] =

⎧⎨⎩
(k ∗ f)i,j,� , with probability 1− r1 − r2,

0, with probability r1,

1, with probability r2.

Impulse noise is never additive, but it can be regarded

as g = k ∗ f + n, where

ni,j,� =

{
0, with probability 1− r,
a− (k ∗ f)i,j,� , with probability r,

(1)

for random-valued noise and for salt-and-pepper noise,

ni,j,� =

⎧⎨⎩
0, with probability 1− r1 − r2,
−(k ∗ f)i,j,� , with probability r1,

1− (k ∗ f)i,j,� , with probability r2.

Suppose ni,j,� is a realization of a random variable N
with PDF p(y), then p(y) has the following properties.

1. Random-valued noise.

Assume 0, − (k ∗ f)i,j,� are the realizations of two

random variables Y1,Y2 with PDF p1(y), p2(y). Ac-

tually p1 is the Delta function � and p(y) is give

by

p(y) = (1− r)�(y) + r

∫ y

y−1
p2(z) dz. (2)

See Appendix A. 1 for more details about this cal-

culation. The blur kernel k is usually assumed to sat-

isfy nonnegativity condition k ⩾ 0 and DC-condition∫
k dx = 1 to get a well-posed solution (see e.g.
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[21]). With these two conditions, we can easily get

−1 ⩽ −(k ∗ f)i,j,� ⩽ 0 for 0 ⩽ f� ⩽ 1. Thus

p2(y) = 0 for all y /∈ [−1, 0]. In other words, p(y) is a

compactly supported function with support [−1, 1].

In addition, we have the following proposition for

p(y).

Proposition 1 p(y) is monotone decreasing in (0, 1]

and monotone increasing [−1, 0); moreover, if

p2(−0.5 + z) = p2(−0.5 − z) holds for all z, then

p(y) = p(−y). Namely, if p2(y) is symmetric around

-0.5, then p(y) is symmetric around 0.

Proof By (2) and the property of p2,

p(y) =

⎧⎨⎩
r
∫ y
−1 p2(z) dz, −1 ⩽ y < 0,

r
∫ 0

y−1 p2(z) dz, 0 < y ⩽ 1.

The monotone property of p(y) is obvious from the

fact p2 ⩾ 0. Let 0 < y ⩽ 1, then −1 ⩽ −y < 0.

Hence, we have

p(y) = r
∫ 0

y−1 p2(z) dz = r
∫ 0.5

y−0.5 p2(−0.5 + z) dz,

p(−y) = r
∫ −y
−1 p2(z) dz = r

∫ 0.5

y−0.5 p2(−0.5− z) dz.

Therefore, p(y) = p(−y). ⊓⊔

2. Salt-and-pepper noise.

Similarly, for the case of salt-and-pepper noise,

p(y) = (1− r1− r2)�(y) + r1p2(y) + r2p2(y− 1). (3)

For simplicity, in this paper we set r1 = r2. p(y)

satisfies proposition 2.

Proposition 2 p(y) = p(y+1) in (−1, 0). If p2(−0.5+

z) = p2(−0.5 − z) holds for all z, then we have

p(y) = p(−y).

Proof Similar to the proof of proposition 1. ⊓⊔

To better understand the above propositions, we

give a specific example in Fig. 1, which contains the

PDFs of the two kinds of impulse noise. In this experi-

ment, we first add a Gaussian blur, with standard devi-

ation be 3.0, to the color “lenna” image f (see Fig. 2),

where the normalized histogram of −k ∗ f is plotted

in Fig. 1(a). Then the blurred image k ∗ f is contam-

inated with random-valued noise and salt-and-pepper

noise with density 60%, respectively. The normalized

histogram of g − k ∗ f for the two cases are plotted

in Fig. 1(b) and Fig. 1(c). One could find the normal-

ized histograms of g−k ∗ f is approximately symmetric

around 0. It is understandable because the histogram of

−k ∗ f in Fig. 1(a) is approximately symmetric around

−0.5. We have tested lots of natural images and most of

them seem to have this approximately symmetric prop-

erty.

As is known in [12–15] that L1-based fidelity out-

performs the L2-based one in removing impulse noise.

In the following, we will interpret this by examining the

approximations to the PDF of noise p(y) in Fig. 2. For

grey scale image, the maximum likelihood estimation of

the additive white Gaussian noise n ∼ N(0, �2) leads

to the L2 norm based fidelity term

1

2
∣∣g − k ∗ f ∣∣22,

while the estimation for a two-sided exponential distri-

bution would result in the L1 norm based fidelity term

∣∣g − k ∗ f ∣∣1.

These two special functions, Gaussian and two-sided

exponential PDFs, can be considered as two different

approximations to p(y). From the example in Fig. 1, we

can see that the two-sided exponential function has a

slightly better approximation to the true PDF than the

Gaussian approximation. That is why L1 norm based

fidelity could remove impulse noise more efficiently than

the L2 based one.

Based on (2), (3) and the above experiment obser-

vations, the PDF of impulse noise p(y) can be approx-

imated by

p(y) ≈ p(y; Θ) =

2∑
l=1

�lpl(y; �l), (4)

where Θ = {�1, �2, �1, �2} is a parameter set such that∑2
l=1 �l = 1, and pl(y; �l) is a density function param-

eterized by �l. Based on the symmetric property dis-

cussed in the previous paragraphs, we can view pl(y; �l)

as a Gaussian or two-sided exponential PDF, i.e.,

pl(y;�2
l ) =

1√
2��2

l

exp{− y2

2�2
l

} (5)

or

pl(y;�2
l ) =

1

2�2
l

exp{−∣y∣
�2
l

}. (6)

Remark: We do not directly use (2) and (3) as the

PDFs of noise but choose their approximations. This is

because the cost functionals derived from (2) and (3)

are extremely complex and difficult to minimize. On the

other hand, numerical experimental results show that

both � and
∫ y
y−1 p2(z) dz could be well approximated by

two Gaussian (or two-sided exponential) functions by

choosing a small �2
1 or a large �2

2 respectively. Mean-

while, the corresponding cost functionals (ref. section
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(a) Normalized histogram of −k ∗ f , i.e. p2(y).

(b) Random-valued noise with r = 0.6. (c) Salt-and-pepper noise with r1 = r2 = 0.3.

Fig. 1 Different approximations to p(y) for random-valued noise and salt-and-pepper noise, respectively. Note that all the scale of y

axis is logarithmic and we plot these figures by MATLAB function “semilogy”.

4) resulting from the two Gaussian and two-sided ex-

ponential functions are quadratic or half-quadratic and

are easy to solve. Theoretically speaking, it is known

that the Delta function can be well approximated by

Gaussian function, namely,

lim
�→0+

1√
2��

exp{− y2

2�2
} = �(y)

holds in the sense of distributions. However, we have not

fully explored the connections between
∫ y
y−1 p2(z) dz

and exponential types functions, which is left for fu-

ture research.

Of course, there are many choices for such approx-

imation, e.g., mixtures of Gaussian/uniform, two-sided

exponential/uniform, two-sided exponential/Gaussian,

etc. In this paper, we only choose Gaussian/Gaussian

and two-sided exponential/two-sided exponential mix-

tures. Others can be addressed in the same manner.

The mixture models, in fact, have better approxima-

tions to the PDF of impulse noise than others, which is

evident in Fig. 1. Unfortunately, the cost functionals

for the mixture models are difficult to optimize since

there are many parameters and a logarithm of the sum.

In the next section, we will discuss how to overcome

this difficulty.

3 Parameters Estimation via the EM

Algorithm

In this section, we discuss how to estimate the param-

eters of noise for any given data n.

The maximum likelihood estimator is usually em-

ployed for such kind of problem. Let M = 3m1m2 − 1

and Ni′ , i
′

= 0, 1, 2, ⋅ ⋅ ⋅ ,M are random variables. Sup-

pose all these random variables are independent and

identically distributed with PDF p(ni′ ; Θ), where Θ is

an unknown parameter set. ThusN = (N0,N1, ⋅ ⋅ ⋅ ,NM )
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is a random vector with PDF

p(n; Θ) =

M∏
i′=0

p(ni′ ; Θ).

We can view the noise n = (n0, n1, ⋅ ⋅ ⋅ , nM ) is a realiza-

tion of N . Then the MLE of Θ given n is a parameter

Θ∗ that maximizes the likelihood function or the log-

likelihood function

l(Θ; n) = ln p(n; Θ) = ln

M∏
i′=0

p(ni′ ; Θ)

=

M∑
i′=0

ln p(ni′ ; Θ).

(7)

Actually, in the above equation p(ni′ ; Θ) is a discretiza-

tion of (4). So the likelihood function becomes

l(Θ; n) =

M∑
i′=0

ln

2∑
l=1

�lpl(ni′ ; �l),

which is difficult to optimize because it contains the

logarithm of the sum. To address this difficulty, we re-

sort to EM algorithm, an efficient algorithm for mixture

model parameter estimation. The basic idea of EM al-

gorithm is that: instead of maximizing l(Θ; n), we turn

to maximize another function H(Θ), which can be more

easily maximized with the property that the values of

l(Θ; n) do not decrease in each step of the iteration.

Consequently, the main task is how to construct such a

function H(Θ). We will review this [23,22,9,24] in the

next paragraph.

Generally speaking, we do not know in advance that

a pixel in the image whether is corrupted by noise or

not, especially when the image is contaminated by random-

valued noise. Here we introduce a random variable Ci′
to indicate the pixel at location i

′
is noise or not, to be

more exact, if gi′ is a noise free pixel, then let Ci′ = 1,

else if gi′ is contaminated by noise, we let Ci′ = 2.

Namely, if we denote S1 = {0}, S2 = ℝ∖{0} and C =

(C0, C1, ⋅ ⋅ ⋅ , CM ), then we have Ci′ = 1 when ni′ ∈ S1

and Ci′ = 2 when ni′ ∈ S2.

We consider N as the observed variable or incom-

plete variable and Z = (N , C) as the complete variable,

where C is the hidden variable. Next, let p(n, c; Θ), p(c; Θ)

be the PDFs of Z and C respectively. Then the condi-

tional PDF of c given n is

p(c∣n; Θ) =
p(n, c; Θ)

p(n; Θ)
. (8)

Thus the log-likelihood function (7) for Θ given n be-

comes

l(Θ; n) = ln p(n; Θ)

= ln p(n, c; Θ)− ln p(c∣n; Θ)

= l(Θ; n, c)− l(Θ; c∣n).

(9)

The second equality follows by equation (8) and the

last one follows from the definition of the log-likelihood

function.

Given parameter set Θ� , where � refers to an iter-

ation variable, we have

l(Θ; n)

= l(Θ; n)
∑

c

p(c∣n; Θ�)

=
∑

c

l(Θ; n)p(c∣n; Θ�)

(9)
=
∑

c

l(Θ; n, c)p(c∣n; Θ�)−
∑

c

l(Θ; c∣n)p(c∣n; Θ�)

≜ H(Θ; Θ�)− J(Θ; Θ�).

(10)

In the above equation,
∑

c represents the sum over all

the possible values of c and thus
∑

c p(c∣n; Θ�) = 1.

With these notations, one can get the following the-

orem.

Theorem 1 For every �, if H(Θ�+1; Θ�) ⩾ H(Θ� ; Θ�),

then l(Θ�+1; n) ⩾ l(Θ� ; n).

The proof of this theorem can be found in [9]. For com-

pleteness, we give its proof in the Appendix (A. 2).

Consequently, the EM algorithm could be summa-

rized as following:

EM algorithm.

Given the observed data n and initial guess parameter

set Θ0, for � = 0, 1, 2, ⋅ ⋅ ⋅ , do

Step 1 (E-step). Compute

H(Θ; Θ�) =
∑

c

ln p(n, c; Θ)p(c∣n; Θ�). (11)

Step 2 (M-step). Find Θ�+1, such that

Θ�+1 = arg max
Θ

H(Θ; Θ�). (12)

The crucial procedure of EM algorithm is to calcu-

late H(Θ; Θ�). Here we consider mixture model (4), by

using Bayes’s rule, p(ci′ ∣ni′ ; Θ�), p(ni′ , ci′ ; Θ) in equa-

tion (11) becomes

p(ci′ ∣ni′ ; Θ�) =
p(ci′ )p(ni′ ∣ci′ ; Θ�)

p(ni′ ; Θ
�)

=
��
c
′
i

pc′i
(ni′ ; �

�
c
′
i

)∑2
&=1 �

�
& p&(ni′ ; �

�
& )
,

(13)

and

p(ni′ , ci′ ; Θ) = p(ci′ )p(ni′ ∣ci′ ; Θ)

= �c′i
pc′i

(ni′ ; �c′i
).

(14)
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Plugging (13) and (14) into equation (11) and simpli-

fying the expression, then

H(Θ; Θ�) =

2∑
l=1

M∑
i′=0

wl(i
′
; Θ�) ln�l

+

2∑
l=1

M∑
i′=0

wl(i
′
; Θ�) ln pl(ni′ ; �l),

(15)

where Θ = {�1, �2, �1, �2} and

wl(i
′
; Θ�) =

��l pl(ni′ ; �
�
l )∑2

&=1 �
�
& p&(ni′ ; �

�
& )
. (16)

More details about calculating H(Θ; Θ�) could be

found in [22]. Comparing (13) and (16), we can get that

wl(i
′
; Θ�) is a priori probability of ni′ ∈ Sl. This func-

tion is very important for our later approach because

it could discriminate between pixels with only blur and

noise.

4 The Proposed Variational Model

Now we incorporate the features of variational regular-

ization methods and EM algorithm and present a new

model that can deblur color images with impulse noise.

Let us begin with some studies regarding the connec-

tions between the probability models and the regular-

ization methods. Recall that the degraded color image

g could be modeled by the discrete version

gi′ = (k ∗ f)i′ + ni′ , (17)

where i
′

= �m1m2 + jm1 + i. For all i
′
, assume Gi′ ,

ℱi′ , Ni′ are three different random variables, and gi′

is a realization of Gi′ . Then the MAP estimator with

respect to f is given by

f∗ = arg max
f

p(f ∣g) = arg min
f

− ln p(f ∣g), (18)

where

f = (f0, f1, ⋅ ⋅ ⋅ , fM ), g = (g0, g1, ⋅ ⋅ ⋅ , gM ).

If each fi′ is conditionally independent and identically-

distributed, we can get

p(f ∣g) =

M∏
i′=0

p(gi′ ∣fi′ )p(fi′ )
p(gi′ )

.

Note that p(gi′ ) in the above equation is a fixed

constant since gi′ is given by the observed image. Hence,

the problem (18) becomes

f∗ = arg min
f

⎧⎨⎩−
M∑
i′=0

ln p(gi′ ∣fi′ )−
M∑
i′=0

ln p(fi′ )

⎫⎬⎭ .

(19)

For Gaussian noise, Ni′ ∼ N(0, �2), we usually sup-

pose �2 is a known constant. Under these conditions,

the first term of (19) in the continuous setting leads to

the following L2-based fidelity term

1

2
∣∣g − (k ∗ f)∣∣22 + c1,

where c1 is a constant. On the other hand, the assump-

tion of p(fi′ ) would lead to a smooth term or called

regularization term. For example, the assumption

p(fi′ ) ∝ exp{−
�f2

i′

2
}

leads to a channel-by-channel Tikhonov regularization

term

�

2
∣∣f ∣∣22.

As for impulse noise, we assume the noisy data ni′ =

gi′ − (k ∗ f)i′ approximately follows a distribution with

the mixture PDF (4). Inspired by EM algorithm to it-

eratively solve a series of minimization problems, we

can establish a new model according to (19), theorem

1, (15) and (4):

(f�+1,Θ�+1) = arg min
f ,Θ

E(f ,Θ;wl,�
i′

),

where E(f ,Θ;wl,�
i′

)

= −
2∑
l=1

M∑
i′=0

wl,�
i′

ln pl(gi′ − (k ∗ f)i′ ; �l)

−
2∑
l=1

M∑
i′=0

wl,�
i′

ln�l + �R(f).

(20)

In the above equation,

wl,�
i′

=
��l pl(gi′ − (k ∗ f�)i′ ; �

�
l )∑2

&=1 �
�
& p&(gi′ − (k ∗ f�)i′ ; �

�
& )
, (21)

�2 = 1−�1, R(f) is a regularization term and � > 0 is

a parameter.

In this paper, we do not focus on the smoothing

term R(f). For computational convenience, we utilize

the vectorial total variation (VTV) regularization

VTV(f) =

∫



∣∇f ∣dx,

which can be found in [25]. Other regularizers [26,27]

such as the Beltrami regularizer, Mumford-Shah seg-

mentation functional [28,14,15], and nonlocal regular-

ization operator [29,30] can also be employed for this

problem.
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Remark: The fidelity term in the proposed method do

not couple the rgb channels since the impulse noise is

usually independent of channels. However, it is easy to

extend this to the coupling version by using the three

dimensions PDF and considering a better channels cou-

pled regularization such as Beltrami regularizer.

Starting from an initial guess f0,Θ0, we compute a

series of minimizers

f1,Θ1, f2,Θ2, ⋅ ⋅ ⋅ , f�+1,Θ�+1, ⋅ ⋅ ⋅

such that

(f�+1,Θ�+1) = arg min
f ,Θ

E(f ,Θ; f� ,Θ�).

Then plugging (5) or (6) into (20), ignoring any con-

stant term and using the notations which is defined in

section 2.1, E(f ,Θ; f� ,Θ�) has the following expres-

sions:

1. TVAWL2 model. The cost functional E(f ,Θ; f� ,Θ�)

is defined by

1

2

2∑
l=1

∣∣k ∗ f − g∣∣22,wl,�

�2
l

+ �

∫
∣∇f ∣dx

+
1

2

2∑
l=1

< wl,� ,1 > (ln�2
l − 2 ln�l),

(22)

where �2 = 1− �1, and

wl,� =

��l
(�l)�

exp

{
− (k ∗ f� − g)2

2(�2
l )�

}
2∑
&=1

��&
(�&)�

exp

{
− (k ∗ f� − g)2

2(�2
& )�

} . (23)

2. TVAWL1 model. E(f ,Θ; f� ,Θ�) is given by

2∑
l=1

∣∣k ∗ f − g∣∣1,wl,�

�2
l

+ �

∫
∣∇f ∣dx

+

2∑
l=1

< wl,� ,1 > (ln�2
l − ln�l),

(24)

where �2 = 1− �1, and

wl,� =

��l
(�2
l )�

exp

{
−†k ∗ f� − g†

(�2
l )�

}
2∑
&=1

��&
(�2
& )�

exp

{
−†k ∗ f� − g†

(�2
& )�

} . (25)

Some symbols are needed to interpret:

Θ = {�1, �
2
1 , �

2
2}, where �1, �

2
l are variables; � is the it-

eration number; w1,� andw2,� are two known weighting

vector-valued functions given the �-th iterative values

f� and Θ� .

The main difference between TVAWL2 and TVAWL1

lies in the norm used in the first term of the cost func-

tional. As shown in the preceding discussion and mo-

tivation in section 2.2, these are actually the results of

different approximations to the PDF of noise p(y).

The superiority of model (22)/(24) is that the intro-

duction of the weighting functions wl can automatically

determine deblurring or denoising at each pixel. More

specifically, if we let g̃ = gw1 and ˜̃g = gw2, then g̃

represents a noise free blurred image while ˜̃g stands for

random noise. Our model can make the restoration g̃

less smooth thanks to different values of �2
l . That is

to say, the local behaviors of denoising and deblurring

could be adjusted by weighting functions wl and the

statistical parameters �2
l , though a fixed global regu-

larization term is utilized in our model. In the next sec-

tion, we will present an experiment to further discuss

the role of these two weighting functions.

5 Numerical Methods and Experimental

Results

5.1 Algorithms

The simple gradient descent method can be employed

to solve our problem, but it will be very slow. The main

difficulty of solving the proposed minimization problem

is the non-differentiability of the regularization term

VTV(f) and L1 fidelity term in TVAWL1. In recent

years, many efficient algorithms have appeared, i.e.,

graph cuts [31], dual methods [32,33], split Bregman

method [34], augmented Lagrangian method [35], al-

ternating direction method of multipliers [36], Douglas-

Rachford splitting [37,38]. Most of these algorithms

are equivalent. More connections among them could be

found in [35–37]. Here, we apply Chambolle’s projection

algorithm, which is a dual method proposed by Cham-

bolle in [33] and then extended to vector-valued images

by Bresson et al. in [25], to solve TVAWL2 model. For

TVAWL1 problem, we resort to the split Bregman it-

eration. We want to mention that the proposed model

can also be solved by other algorithms with some minor

modifications.

First, Let us discuss the algorithm for TVAWL2. To

solve (22) more efficiently, we add an auxiliary varialbe

u and get an approximate problem:

min
f ,u,Θ

E(f ,u,Θ), (26)
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where E(f ,u,Θ) is defined by

1

2

2∑
l=1

∣∣k ∗ u− g∣∣22,wl,�

�2
l

+
�

2
∣∣f − u∣∣22 + �

∫
∣∇f ∣dx

+
1

2

2∑
l=1

< wl,� ,1 > (ln�2
l − 2 ln�l),

� ≫ 1 is a penalty parameter,

wl,� =

��l
(�l)�

exp

{
− (k ∗ u� − g)2

2(�2
l )�

}
2∑
&=1

��&
(�&)�

exp

{
− (k ∗ u� − g)2

2(�2
& )�

} , (27)

and �2 = 1 − �1. More details and theoretical results

about the above split scheme can be found in [16,25].

By applying the alternating minimization algorithm,

(26) splits into three subproblems:

subproblem 1.

f�+1 = arg min
f

E(f ,u� ,Θ�)

= arg min
f

{
�

2
∣∣f − u� ∣∣22 + �

∫
∣∇f ∣dx

}
,

(28)

subproblem 2.

u�+1 = arg min
u

E(f�+1,u,Θ�)

= arg min
u

⎧⎨⎩
1

2

2∑
l=1

∣∣k ∗ u− g∣∣22,wl,�

(�2
l )�

+
�

2
∣∣f�+1 − u∣∣22

⎫⎬⎭ ,
(29)

subproblem 3.

Θ�+1 = arg min
Θ

E(f�+1,u�+1,Θ)

= arg min
Θ

⎧⎨⎩
1

2

2∑
l=1

∣∣k ∗ u�+1 − g∣∣22,wl,�

�2
l

+
1

2

2∑
l=1

< wl,� ,1 > (ln�2
l − 2 ln�l)

⎫⎬⎭ .

(30)

These three subproblems are all easy to solve: sub-

problem 1 (28) is the vectorial ROF model and we can

solve it by Chambolle’s projection algorithm [33,25];

the cost functional in (29) is quadratic with respect to

u, so the associated Euler-Lagrange equation

k̂∗

(
(k ∗ u)

2∑
l=1

wl,�

(�2
l )�

)
+�u = k̂∗

(
g

2∑
l=1

wl,�

(�2
l )�

)
+�f�+1

(31)

is a positive symmetric definite linear system and the

conjugate gradient (CG) method can be employed to

get an approximated solution, where k̂ is the conjugate

function of k; finally, Θ�+1 in (30) can be given explic-

itly by

��+1
1 =

< w1,� ,1 >

3∣
∣
, ��+1

2 = 1− ��+1
1 , (32)

(�2
l )�+1 =

∣∣k ∗ u�+1 − g∣∣22,wl,�

< wl,� ,1 >
. (33)

Until now, we have come up with an algorithm to solve

TVAWL2. Algorithm 1.

Choose initial values f0 = u0 = 0,

Θ0 = {�0
1 = 0.5, �0

2 = 0.5, (�2
1)0 = 10−4, (�2

2)0 = 1.0},
and calculate wl,0 (l = 1, 2) by equation (27).

Set � = 0 do

step 1. Update f�+1 from (28) by Chambolle’s projec-

tion inner iteration.

step 2. If ∣∣f�+1 − f� ∣∣∞ < 10−2, end the algorithm.

Else, go to the next step.

step 3. Solve u�+1 from (31) by CG inner iteration.

step 4. Update Θ�+1 by equations (32), (33).

step 5. Calculate wl,�+1 by equation (27).

step 6. � = � + 1.

Based on some experimental experiences, we let the

number of Chambolle’s projection inner iteration to

be 1 and end the CG inner iteration when ∣∣u�1+1 −
u�1 ∣∣∞ < 10−3, where �1 is the number of the CG iter-

ation.

Now let us move on to solving TVAWL1 problem.

Other than the former model, a weighting L1 norm in

TVAWL1 makes this problem more difficult to optimize.

We mention that Chambolle’s projection algorithm can

still be used, but here we employ the split Bregman

method [34] to solve it.

Similarly, we first add two auxiliary function d̃ ∈
ℝ3,

˜̃
d ∈ R2×3 and get the following approximated cost

functional to (24):

2∑
l=1

∣∣d̃∣∣1,wl,�

�2
l

+
�1
2

2∑
l=1

∣∣d̃− (k ∗ f − g)∣∣22,wl,�

(�2
l )�

+

2∑
l=1

< wl,� ,1 > (ln�2
l − ln�l) + �

∫
∣˜̃d∣dx

+
�2
2
∣∣˜̃d−∇f ∣∣22,

(34)

where �1, �2 ≫ 1 are two penalty parameters, �2 =

1− �1 and

wl,� =

��l
(�2
l )�

exp

{
− †d̃†

(�2
l )�

}
2∑
&=1

��&
(�2
& )�

exp

{
− †d̃†

(�2
& )�

} . (35)
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Following [34], we add two Bregman variables b̃ ∈
ℝ3,

˜̃
b ∈ ℝ2×3 to (34), then the split Bregman scheme

for our problem becomes⎧⎨⎩

(f�+1, d̃�+1,
˜̃
d
�+1

,Θ�+1) = arg min

f ,d̃,
˜̃
d,Θ

E(f , d̃,
˜̃
d,Θ),

b̃�+1 = b̃� + k ∗ f�+1 − g − d̃�+1,˜̃
b
�+1

=
˜̃
b
�

+∇f�+1 − ˜̃d�+1

,

where

E(f , d̃,
˜̃
d,Θ) =

2∑
l=1

∣∣d̃∣∣1,wl,�

�2
l

+
�1
2

2∑
l=1

∣∣d̃− (k ∗ f − g)− b̃� ∣∣22,wl,�

(�2
l )�

+

2∑
l=1

< wl,� ,1 > (ln�2
l − ln�l) +

�2
2
∣∣˜̃d−∇f − ˜̃b� ∣∣22

+�

∫
∣˜̃d∣dx.

Applying the alternating minimization algorithm,

the above minimization problem can be split into the

following subproblems:

subproblem 1. f�+1 = arg min
f

E(f , d̃� ,
˜̃
d
�

,Θ�),

subproblem 2. d̃�+1 = arg min
d̃

E(f�+1, d̃,
˜̃
d
�

,Θ�),

subproblem 3.
˜̃
d
�+1

= arg min˜̃
d

E(f�+1, d̃�+1,
˜̃
d,Θ�),

subproblem 4.Θ�+1 = arg min
Θ

E(f�+1, d̃�+1,
˜̃
d
�+1

,Θ).

These four subproblems are all easy to optimize.

The corresponding Euler-Lagrange equation of sub-

problem 1

k̂ ∗

(
(k ∗ f)

2∑
l=1

wl,�

(�2
l )�

)
− �2
�1
△f

= k̂ ∗

(
(g − b̃� + d̃�)

2∑
l=1

wl,�

(�2
l )�

)
+
�2
�1
∇ ⋅ (˜̃b� − ˜̃d�)

(36)

is still linear and it can be approximately solved by

many solvers (e.g. CG, algebraic multigrid (AMG) solver).

If we use circular/Neumann boundary condition for the

image, then the convolution can be calculated by the

fast Fourier transform[9] (FFT) /discrete cosine trans-

formation [39] (DCT).

The subproblem 2 can be done explicitly by

d̃�+1 = shrink ∘
(
k ∗ f�+1 − g + b̃� ,

1

�1

)
. (37)

Here shrink∘ : ℝ3 × ℝ3 → ℝ3 is an operator which has

the expression

[shrink ∘ (y, z)]� =
y�
∣y� ∣

max{∣y� ∣ − z� , 0}, � = 0, 1, 2.

A simple proof could be found in the Appendix A. 3.

Similarly, the solution of subproblem 3 is given by

˜̃
d
�+1

= shrink

(
∇f�+1 +

˜̃
b
�

,
�

�2

)
, (38)

and shrink : ℝ2×3×ℝ→ ℝ2×3 is an operator such that

shrink(x, z) =
x

∣x∣
max{∣x∣ − z, 0}.

Finally, the optimality criteria for Θ�+1 is

��+1
1 = <w1,� ,1>

3∣
∣ , ��+1
2 = 1− ��+1

1 ,

(�2
l )�+1 =

∣∣d̃�+1∣∣
1,wl,�

<wl,� ,1>
.

(39)

As a result, we obtain an algorithm for TVAWL1:

Algorithm 2.

Choose initial values f0 = g, b̃0 = d̃0 = 0,
˜̃
b
0

=
˜̃
d
0

=

0, Θ0 = {�0
1 = 0.5, �0

2 = 0.5, (�2
1)0 = 10−4, (�2

2)0 =

1.0}, and calculate wl,0 (l = 1, 2.) by equation (35).

Set � = 0 do

step 1. Find f�+1 by solving (36) using CG.

step 2. If ∣∣f�+1 − f� ∣∣∞ < 10−2, end the algorithm.

Else, go to the next step.

step 3. Update d̃�+1 by (37).

step 4. Update
˜̃
d
�+1

by (38).

step 5. Update Θ�+1 by equation (39).

step 6. Calculate wl,�+1 by equation (35)
step 7. b̃�+1 = b̃� + k ∗ f�+1 − g − d̃�+1.

step 8.
˜̃
b
�+1

=
˜̃
b
�

+∇f�+1 − ˜̃d�+1

.

step 9. � = � + 1, go to step 1.

5.2 Experimental results

In order to compare with other methods, the peak signal-

to-noise ratio,

PSNR = 10 log10

3m1m2

∣∣f − I∣∣22
,

is taken to measure the improvement of image quality,

where I is the m1 × m2 original image and f is the

corresponding recovered result. The original images of

size 256× 256 for our synthetic experiments are shown

in Fig. 2.

Some parameters which occurred in our models are

selected as follows: the regularization parameter � = 5,

the penalty parameters � = 100, �1 = 250, �2 = 100;
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Fig. 2 The original images I for the synthetic experiments.

the initial values (�2
1)0 = 10−4 for salt-and-pepper noise

and (�2
1)0 = 5× 10−2 for random-valued noise. A point

worth mentioning is that we do not need to change any

parameter values in all the following experiments ac-

cording to different levels of noise since the parameters

�2
l , which indicate the levels of noise, can balance the

behaviors between denoising and deblurring.

Recently, the FTVd algorithm [16] is regarded as

one of the most efficient methods to solve TVL1 prob-

lem

min
f

VTV(f) + �∣∣k ∗ f − g∣∣1.

And we will compare our method with other models

using FTVd.

Generally speaking, images with heavy noise can be

hardly restored because additive noise results in a great

loss of information. But for heavy impulse noise, good

reconstruction would be expected. Impulse noise with

high level makes the image looks heavily blurry and

noise-contaminated, however there are still some pixels

with only blur. As mentioned earlier, the two adaptively

weighting vectorial functions wl in our method can de-

tect them and we can still obtain a good reconstruction.

In order to better interpret the role of the weighting

function wl, we propose an experiment in Fig.3: adding

same level of salt-and-pepper noise to the same blurred

image with different spatial distribution. In the first

case, the noise is added such that there is no useful in-

formation in the right part of the image (see Fig.3(a)),

while in the second case, the noise is added randomly

to the image (see Fig.3(f)). The reconstructions with

the existing variational method such as TVL1 and our

modified method TVAWL1 are shown in the second

and third column, respectively. Note that the proposed

model could not do better than TVL1 in the left half

image for the first case. This is because one could choose

different � for the two parts of the image in TVL1 to get

the similar results as ours. However, it would fail in the

second case because the spatial distribution of noise is

random. The advantage of our models is evident in the

second case, since even in this case, noise could be still

detected by the weighting functions wl. The estimated

noise free image g̃ = gw1 and noise ˜̃g = gw2 in our

models are displayed in the last two columns.

Now let us compare the proposed method with the

L1 fidelity term based methods [12,14–18]. We test our

algorithm and FTVd with a variety of blurs and differ-

ent levels of impulse noise.

Fig. 4 shows the comparison of the reconstructed re-

sults obtained by TVL1 with FTVd and our method for

the case of salt-and-pepper noise. As is well known that

the parameter � is very important for TVL1 model, so

we test some values (including the suggested value in

FTVds) and choose the result with the highest PSNR

for comparison. In this figure, the Gaussian blurred

(� = 2.0) images with different levels of salt-and-pepper

noise are shown in the first column, while the levels of

noise are r1 + r2 = 30%, 60%, 80%, 90%, respectively,

and the results obtained by FTVd and ours could be

found in the last three columns. As can be seen from

Fig. 4, there is no significant difference between the

three methods in the case of low level noise (e.g. 30%).

When the noise level is increased, our approach pro-

duce much better results than TVL1. The correspond-

ing PSNR values (the measure of image quality) and

CPU time are summarized in Table 1. High PSNR val-

ues and similar CPU time can be seen for the proposed

model.

For salt-and-pepper noise, the TVAWL1 model seems

to have a better performance than TVAWL2. In gen-

eral, it is more difficult to detect random-valued noise

than salt-and-pepper noise. Our method can recover

images from high-density random-valued noise and esti-

mate the noise. Results of restoring out-of-focus blurred

image (radius=7) with random-valued noise are illus-

trated in Fig.5. We showed the estimated noise free im-

ages and the estimated noise in the last two columns of

Fig.5.

The method discussed in this paper can also be ap-

plied to image denoising and inpainting. The only dif-

ference with deblurring is that the blur kernel k in de-

noising/inpainting should be the delta function.

Fig.6 shows some results of denoising with TVAWL1.

Here we compare our results with those got from me-

dian filter. The corresponding PSNR values and CPU

time are shown in Table 1.

A result of inpainting with the proposed method

is illustrated in Fig.7. Unlike other inpainting meth-

ods, when the inpainting area satisfy certain conditions,

such as the inpainting areas are corrupted by an impul-

sive process, we do not need to set the inpainting mask

for the proposed method because the mask can be es-

timated by the weighting functions.

Recently, Cai et al. [17,18] proposed a two-phase

method to deblur grey scale image with impulse noise
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(a) g (b) TVL1, � = 16 (c) proposed AWTVL1 (d) g̃ = gw1 (e) ˜̃g = gw2

(f) g (g) TVL1, � = 8 (h) proposed AWTVL1 (i) g̃ = gw1 (j) ˜̃g = gw2

Fig. 3 Explaining the role of the weighting functions w1,w2. (a),(f) blurred images corrupted by the same noise with different spatial

distributions; (b),(g) restored by FTVd;(c),(h) restored by the proposed method; (d),(i) the estimated noise free image; (e),(j) the

estimated noise.

Table 1 PSNR (dB) values and CPU time (s) in the experiments (Fig. 4∼Fig. 6).

PSNR (dB) CPU time (s)

Observed Median filter TVL1 TVAWL2 TVAWL1 Median filter TVL1 TVAWL2 TVAWL1

Fig.4(a) - 28.84 29.82 30.21 - 15.66 14.77 16.89

Fig.4(e) - 27.44 29.75 30.01 - 17.97 16.81 17.87

Fig.4(i) - 23.55 28.47 29.39 - 27.16 24.90 25.20

Fig.4(m) - 19.87 23.57 27.92 - 43.53 26.23 28.22

Fig.5(a) - 25.13 - 28.61 - 26.47 - 38.87

Fig.5(f) - 21.86 - 26.96 - 31.83 - 43.31

Fig.6(a) 30.44 - - 41.28 0.095 - - 3.12

Fig.6(b) 23.61 - - 35.66 0.34 - - 4.38

Fig.6(c) 18.01 - - 29.09 0.42 - - 5.41

Fig.6(d) 6.77 - - 21.65 0.60 - - 5.86

and obtained good results. With our notations, the two-

phase method actually minimizes the following func-

tional

∣∣k ∗ f − g∣∣1,� + �R(f),

where R(f) is a regularization term, � > 0 is a param-

eter and the characteristic function � is estimated by

the median-type filters, which is determined by

�(x) =

{
0, (k ∗ f)(x) is degraded by noise,

1, else.

Now we compare experimental results of the two-phase

method and our models. It appears that the presented

algorithms have the similar results to the two-phase

method for salt-and-pepper noise. An interpretation is

given as follows: in TVAWL1 model (24), if we fix w1,� =

�, w2,� = 0 and let all the parameters �l, �
2
l be con-

stants, then it is equivalent to the two-phase method;

in fact, w1,� can be considered as a smooth version of

�, and both wl,� and � play the same role of adjusting

the fidelity term, but in different ways— � eliminates

the likely noisy pixels from the fidelity term and wl,�

gives different weights to the noisy and only blurred

pixels; moreover, salt-and-pepper noise is easy to de-

tect and thus both two methods can produce good re-

constructions. However, there is no good detector for

random-valued noise with high noise ratio. Compared

with the two-phase method, the main superiority of our

approach is that it can provide much better restorations

for the case of high density random-valued noise. This is

because the noise detection and deblurring in the pro-

posed algorithm are alternately implemented and the
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(a) 30% salt-and-pepper noise (b) TVL1, � = 16 (c) proposed TVAWL2 (d) proposed TVAWL1

(e) 60% salt-and-pepper noise (f) TVL1, � = 6 (g) proposed TVAWL2 (h) proposed TVAWL1

(i) 80% salt-and-pepper noise (j) TVL1, � = 2 (k) proposed TVAWL2 (l) proposed TVAWL1

(m) 90%salt-and-pepper noise (n) TVL1, � = 1.5 (o) proposed TVAWL2 (p) proposed TVAWL1

Fig. 4 Comparison. First column: g, blurred (Gaussian, � = 2.0) images corrupted by different levels (r1 + r2 =30%,60%,80%,90%)
salt-and-pepper noise. Second column: restored by TVL1 with FTVd. Third column: restorations with TVAWL2. Fourth column:

restorations with TVAWL1

random-valued noise can be better identified. So, in the

following, more attentions will be paid to the random-

valued noise.

To be fair, we test our algorithms with grey scale

images and the ending conditions of the CG solver in

the two-phase method and our algorithms are all set to

be

∣∣f�1+1 − f�1 ∣∣2
∣∣f�1+1∣∣2

< 10−5.

In the experiments, we first add some out of focus blur

with radius 7 to the “lenna” grey scale image, which is

then further corrupted by adding different levels random-

valued noise.
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(a) 35% random-value
noise

(b) TVL1, � = 13 (c) proposed TVAWL1 (d) g̃ = gw1 (e) ˜̃g = gw2

(f) 65% random-value

noise

(g) TVL1, � = 6 (h) proposed TVAWL1 (i) g̃ = gw1 (j) ˜̃g = gw2

Fig. 5 Comparison. (a),(f) the blurred (out-of-focus blur, radius=7) image with random-valued noise ,r = 35%, 65%; (b),(g) restoration
with FTVd; (c),(h) restoration with the proposed method; (d),(i) the estimated noise free image g̃ = gw1; (e),(j) the estimated noise
˜̃g = gw2.

The results of recovering blurred images with random-

valued noise by the two-phase method [18] and our al-

gorithm are shown in Fig. 8 and the PSNR values and

corresponding CPU time are summerized in Table 2.

We can see from the figure and table that our method

is much better than the two-phase method. As is re-

ported in [17,18], the two-phase method can not work

efficiently if the ratio of random-valued noise exceeds

55%, but our method can still give good results even if

the ratio is as high as 75%.

Remark: In this experiment, the ending condition

of CG in our method is more rigorous than those of

the previous ones, thus it is more CPU time-consuming

than the previous implementations.

From all the above experiments, one can conclude

that the proposed method is superior than other models

in recovering images from impulse noise.

6 Conclusion and Discussion

We proposed a novel approach of reconstructing color

images with blur and impulse noise. The main idea is

that at each pixel, the impulse noise is viewed as a real-

ization of the sum of two Gaussian or two two-sided ex-

ponential PDFs, then we formulate a functional which

contains two adaptively weighting functions and some

statistical control parameters. Compared with the ex-

isting variational methods, the introduced weighting

functions can identify impulse noise more efficiently,

and the algorithm could locally adjust denoising and

deblurring by the introduced parameters of PDFs and

these weighting functions. Our experimental results had

shown that the quality of the restored images by the

proposed method are better than the existing models

such as TVL1 (both under random-valued noise and

salt-and-pepper noise) and two-phase method [18] (un-

der random-valued noise). Our method can give good

restorations for random-valued noise with noise ration

as high as 75%, which can not be well handled by the

existing variational methods.

In section 5 we have shown the connections between

the proposed algorithms and the two-phase method. In

fact, the model in this study is an extension of the

traditional ones. For example, if �1 = �2 = 0.5 and

�2
1 = �2

2 are fixed constants, then the weighting func-

tions w1 = w2 = 0.5. In this case, the cost functional in

our method, after ignoring some constant terms, would

reduce to the existing ones.

Our method is based on TV regularization and EM

algorithm, and it is well known that EM algorithm has a

local convergence. Thus, the proposed algorithms partly

depend on the initial value Θ0. It is a good idea to set

the initial value wl,0 to the results of the first phase

in two-phase method [17–19]. In addition, we choose

an approximation to p(y) in E.q. (2) to avoid imple-

mental difficulties and obtain some good experimental

result. However, a natural alternative is to consider (2)

directly, and how to address this difficulty is our future

work directions.



15

(a) 8% salt-and-pepper noise (b) 25% salt-and-pepper noise (c) 65% salt-and-pepper noise (d) 95% salt-and-pepper noise

(e) median filter,3× 3 window (f) median filter,4 × 4 window (g) median filter,7× 7 window (h) median filter,9×9 window

(i) proposed TVAWL1 (j) proposed TVAWL1 (k) proposed TVAWL1 (l) proposed TVAWL1

Fig. 6 Some results of denoising. First row: noisy image. Second row: denoising with MATLAB function medfilt2 channel by channel.
Third row: denoising with the proposed method.

(a) g (b) TVAWL1 output, CPU time: 4.63s (c) The estimated mask ˜̃g = gw2

Fig. 7 Automatic inpainting.
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(a) 40% random-valued noise (b) 55% random-valued noise (c) 65% random-valued noise (d) 75% random-valued noise

(e) [18],� = 0.005 (f) [18],� = 0.02 (g) [18],� = 0.04 (h) [18],� = 0.06

(i) proposed (j) proposed (k) proposed (l) proposed

Fig. 8 Some restorations of two-phase method [18] and the proposed model under random-valued noise. First row: noisy images.
Second row: restorations with two-phase method. Third row: restorations with TVAWL2.

Table 2 Comparing with PSNR values and CPU time of two-phase method [18] and TVAWL2 under random-valued noise (Fig. 8).

PSNR (dB) CPU time (s)
Noise density r 40% 55% 65% 75% 40% 55% 65% 75%

Two-phase[18] 29.37 27.14 23.83 23.67 64.3 74.7 117.2 132.2

TVAWL2 32.32 30.34 29.11 25.48 39.3 46.9 65.7 95.9

The proposed method can be directly extended to

blind deblurring for impulse noise and also can be ex-

tended to nonlocal version. We have noticed that the

weighting functions wl,� play a role of classifying the

impulse noise according to the different variances �2
l ,

which is similar to the region based image segmenta-

tion in which the pixels are clustered according to the

different means. Thus with the proposed framework,

many better image segmentation method such as glob-

ally convex segmentation [40] can be employed in our

method. Finally, we mention that the proposed varia-

tional framework can be applied to the regularization

term. If we assume ∣∇f ∣ at each x obeys a distribu-

tion which can be approximated by the mixture model,

then one can get a regularizer which has the similar

form as Mumford-Shah functional regularization. We

do not plan to discuss much about these, which are left

for further study.
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A. 1:

Considering the following random event,

N =

{
Y1, when B occurs,

Y, when C occurs,

where B and C are mutually exclusive events. Accord-

ing to the equation (1), P (B) = 1 − r, P (C) = r, and

we get

P (N) = P (N ∩B) + P (N ∩ C)

= P (B)P (N ∣B) + P (C)P (N ∣C)

= (1− r)P (N ∣B) + rP (N ∣C),

Let a be the realization of a random variable Y3 with

PDF p3(y), then

P{N < y} = (1−r)P{Y1 < y}+rP{Y2+Y3 < y}. (40)

Note that Y2 and Y3 are independent, thus following

(40), we have

p(y) = (1− r)�(y) + r(p2 ∗ p3)(y).

Moreover,

p3(y) =

{
1, y ∈ [0, 1],

0, else,

and thus

(p2 ∗ p3)(y) =

∫ ∞
−∞

p2(z)p3(y − z) dz =

∫ y

y−1
p2(z) dz.

A. 2:

Theorem 1 For every �, ifH(Θ�+1; Θ�) ⩾ H(Θ� ; Θ�),

then l(Θ�+1; n) ⩾ l(Θ� ; n).

Proof

∵ J(Θ� ; Θ�)− J(Θ�+1; Θ�)

= −
∑

c(l(Θ�+1; c∣n)− l(Θ� ; c∣n))p(c∣n; Θ�)

= −
∑

c ln(
p(c∣n; Θ�+1)

p(c∣n; Θ�)
)p(c∣n; Θ�)

⩾ − ln
∑

c p(c∣n; Θ�+1) = − ln 1 = 0.

(41)

Here the inequality is given by the convexity of function

− lnx.

∴ l(Θ�+1; n)− l(Θ� ; n)

= (H(Θ�+1; Θ�)−H(Θ� ; Θ�))

+(J(Θ� ; Θ�)− J(Θ�+1; Θ�)) ⩾ 0.

(42)

⊓⊔

A. 3:

Proposition 3 if d̃�+1 =

arg min
d̃

⎧⎨⎩
E(f�+1, d̃,

˜̃
d
�

,Θ�) =

2∑
l=1

∣∣d̃∣∣1,wl,�

(�2
l )�

+
�1
2

2∑
l=1

∣∣d̃− (k ∗ f�+1 − g)− b̃� ∣∣22,wl,�

(�2
l )�

⎫⎬⎭ ,

then

d̃�+1 = shrink ∘
(
k ∗ f�+1 − g + b̃� ,

1

�1

)
.

Proof : Suppose d̃ = (d̃0, d̃1, d̃2). Let z =
∑2
l=1

wl,�

(�2
l )
� ,

and y = k ∗ f�+1 − g + b̃� , with z = (z0, z1, z2), y =

(y0, y1, y2), then

E(d̃) = ∣∣d̃∣∣1,z +
�1
2
∣∣d̃− y∣∣22,z

=

2∑
�=0

∫
z� ∣d̃� ∣dx+

�1
2

2∑
�=0

∫
z� (d̃� − y� )2 dx,

�E

�d̃�
=
z� d̃�

∣d̃� ∣
+ �1z� (d̃� − y� ).

A minimizer of E satisfies �E

�d̃�
= 0, please note z� > 0,

which indicates(
1

∣d̃�+1
� ∣

+ �1

)
d̃�+1
� = �1y� . (43)

If ∣y� ∣ ⩾ 1
�1
, then taking ∣ ⋅ ∣ for two sides of (43), we

get

∣d̃�+1
� ∣ = ∣y� ∣ −

1

�1
.

Take the above expression to (43), and immediately
yield

d̃�+1
� =

y�
∣y� ∣

(
∣y� ∣ −

1

�1

)
.

Else, ∣y� ∣ < 1
�1
,

E(d̃)

=

2∑
�=0

∫
z� ∣d̃� ∣dx+

�1
2

2∑
�=0

∫
z� (d̃2� + y2� − 2d̃�y� ) dx

⩾
2∑

�=0

∫
z� ∣d̃� ∣dx+

�1
2

2∑
�=0

∫
z� (d̃2� + y2� − 2∣d̃� ∣ ∣y� ∣) dx

⩾
2∑

�=0

∫
z� ∣d̃� ∣dx+

�1
2

2∑
�=0

∫
z� (d̃2� + y2� −

2

�1
∣d̃� ∣) dx

=
�1
2

2∑
�=0

∫
z� (d̃2� + y2� ) dx,

thus d̃�+1
� = 0.

In summary, d̃�+1
� = y�

∣y� ∣ max{∣y� ∣ − 1
�1
, 0}. ⊓⊔
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