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Abstract

In this paper, we present a new version of the famous Rudin-Osher-
Fatemi (ROF) model to restore image. The key point of the model is that
it could reconstruct images with blur and nonuniform distributed noise.
We develop this approach by adding several statistical control parameters
to the cost functional, and these parameters could be adaptively deter-
mined by the given observed image. In this way, we could adaptively
balance the performance of the fit-to-data term and the regularization
term. The Numerical experiments have demonstrated the significant ef-
fectiveness and robustness of our model in restoring blurred images with
mixed Gaussian noise or salt-and-pepper noise.

Keywords: Image deblurring, Image denoising, EM algorithm, Nonuniform dis-

tributed noise.

1 Introduction

In many applications, the images we obtain are contaminated by additive noise
and blur. This process is often modeled by

g(x) = (k ∗ f)(x) + n(x), (1)

where f(x) is the original clean image, g(x) is the observed noisy blurred image,
k is the point spread function (PSF) and also called the blur kernel, n(x) is
the additive noise and ∗ refers to the usual convolution. The problem of image
reconstruction is to recover f(x) from the degraded image g(x). Traditional
image recovery approaches are mainly based on variational techniques [2, 3, 4,
6, 8, 9, 10, 11, 13, 17], of which the most famous one is the ROF model, proposed
by Rudin, Osher and E.Fatemi [3, 17]. In that model a regularized solution is
obtained by minimizing the energy functional

T (f) =
1
2
||k ∗ f − g||2L2 + λJβ(f), (2)

where
Jβ(f) =

∫
Ω

√
|∇f |2 + β dx, (3)
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k is a known blur kernel, β > 0 is referred to as the stabilizing parameter,
and λ > 0 is the regularization parameter. Numerous of experimental results
(ref.[3, 4, 10, 12, 17]) have shown the effectiveness of these methods in removing
Gaussian and uniform distributed white additive noise. However, in reality,
images are usually degraded by mixed noise with different means, variances
and even distributions. In this case, the traditional methods(e.g., ROF model)
might not work well.

As is well known, it is very important to select the regularization parameter
λ properly for the ROF model. Figure 1 shows that the ability of the ROF
model in reconstructing images with blur and mixed Gaussian noise. We can
see that the results are not satisfactory for these two particular parameters (λs).
In fact, experimental experience tells us that the results could not be further
improved no matter what λ is selected. This is not accidental since model (2)
employs a fixed global regularization term, therefore the blurring effect could
not be sufficiently removed in areas with low level of noise, whereas the ringing
effect may appear in which with high level of noise.

Figure 1: From left: the blurred and mixed Gaussian noisy image, where the variances
of noise are σ2

1 = 1.0 × 10−2, σ2
2 = 1.0 × 10−4 , the means are µ1 = 0, µ2 = 0

and the mixed ratio is 1:3; the reconstructed image based on the ROF model with
λ = 1.0×10−2; the reconstructed image based on the ROF model with λ = 1.0×10−5

The above experiment tells us that the ROF model cannot work well when
the blurred images are further degraded by mixed Gaussian noise. Thus to
improve the quality of the reconstructed images, more information about such
particular noise should be employed.

In this paper, we propose a new approach which includes some statistical
information of noise. By adaptively updating the statistical control parameters
of noise, we could balance the denoising and deblurring effects and thus get a
better reconstruction. Meanwhile, we offer a method of how one can adaptively
determine the statistical parameters of noise for the image restoration.

The paper is organized as follows: In Section 2, we give a statistical inter-
pretation of the ROF model and propose a Gauss-Total Variation model (G-TV
model). We interpret the ROF model statistically and some statistical control
parameters of noise emerge automatically, then one can see that these parame-
ters depend on the noise may play a similar role of the regularization parameter;
Section 3 contains a Gaussian Mixture-Total Variation model (GM-TV model),
which is used to deal with mixed noise; Experimental results regarding the pro-
posed models are shown in Section 4; Finally, we conclude this paper in Section
5.
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2 G-TV model

In this section, we develop a new interpretation of the ROF model based on
statistical approaches. Suppose the image is defined in a bounded, smooth and
open domain Ω ⊂ R2. In the following, we assume at each point x ∈ Ω, the in-
tensity of noise n(x) or (k∗f)(x)−g(x) is a random variable and all these random
variables {n(x)|x ∈ Ω} are independent and identically-distributed (i.i.d.)as a
Gaussian distribution N(0, σ2), i.e.,

p((k ∗ f)(x)− g(x)|σ2) =
1√

2πσ2
exp

{
−|(k ∗ f)(x)− g(x)|2

2σ2

}
. (4)

We want to maximize the likelihood functional

L(f, σ2) =
∏
x∈Ω

1√
2πσ2

exp
{
−|(k ∗ f)(x)− g(x)|2

2σ2

}
, (5)

or equivalently, to minimize the negative log-likelihood functional

− ln(L(f, σ2)) =
1
2

∫
Ω

|(k ∗ f)(x)− g(x)|2

σ2
dx +

1
2

∫
Ω

ln(σ2) dx +
1
2

∫
Ω

ln(2π) dx.

(6)
Note that the last term in the expression is constant, so we can remove it and
minimize the following functional,

E1(f, σ2) =
1
2

∫
Ω

|(k ∗ f)(x)− g(x)|2

σ2
dx +

1
2

∫
Ω

ln(σ2) dx, (7)

where σ2 is an unknown constant.
If the σ2 is a fixed constant, minimizing (7) is equal to minimizing the

residual
1
2
‖k ∗ f − g‖2

L2 . (8)

The above minimization problem is ill-possed, so we incorporate a regular-
ization term and obtain the following cost functional

E(f, σ2) = E1(f, σ2) + λJ(f). (9)

Here we also choose the TV regularization term

J(f) = Jβ(f) =
∫

Ω

√
|∇f |2 + β dx. (10)

By substituting (7) and (10) into (9), the cost functional becomes

E(f, σ2) =
1
2

∫
Ω

|(k ∗ f)(x)− g(x)|2

σ2
dx +

1
2

∫
Ω

lnσ2 dx + λ

∫
Ω

√
|∇f |2 + β dx.

(11)
For simplicity, we refer this as G-TV model.
The objective functional (11) is convex, continuous and lower bounded with

respect to f for fixed σ2. Moreover, it is also continuous, convex and lower
bounded with respect to σ2 if the following condition holds,

ε ≤ σ2 ≤ 2
A

∫
Ω

|(k ∗ f)(x)− g(x)|2 dx, (12)
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where ε is a very small positive number and

A =
∫

Ω

1 dx. (13)

Therefore, following [7], the alternate minimization (AM) approach can be
applied: in each step of the iterative procedure, we minimize with respect to
one variable and keep the other one fixed. This leads to the following iterative
algorithm:

Algorithm 1: Choose initial values for f0 and (σ2)0. For n = 1, 2, · · · , do
1. Find fn+1, such that

fn+1 = arg min
f

E(f, (σ2)n); (14)

2. Find (σ2)n+1, such that

(σ2)n+1 = arg min
σ2

E(fn+1, σ2). (15)

3. Check the convergence, if converged, stop; else goto 1.
Here and after, we will use arg min E to denote the minimizer of E. We use

a gradient based method to find the minimizers for (14), which is actually a
solution of the following Euler-Lagrange equation

−λ∇ ·

(
∇f√

|∇f |2 + β

)
+

k̂ ∗ (k ∗ f − g)
(σ2)n

= 0, (16)

where k̂ is the conjugated function of k.
There are some existing numerical methods for solving the above nonlinear

type partial differential equation(PDE), for instance, time marching, lagged
diffusivity fixed point(FP) schemes and primal-dual methods. Considering the
robustness and simplicity of the implementation of time marching algorithm, we
will apply it to solve (16), that is, the solution of (16) is to be found by solving
the following PDE to the steady state,

∂f

∂t
= λ∇ ·

(
∇f√

|∇f |2 + β

)
− k̂ ∗ (k ∗ f − g)

(σ2)n
,

f |t=0 = g,

∂f

∂~n
= 0,

(17)

where ~n is outward unit normal vector field.
The solution of step 2 is given by

(σ2)n+1 =
1
A

∫
Ω

|(k ∗ fn+1)(x)− g(x)|2 dx. (18)

According to (12), the stopping condition is∫
Ω

|(k ∗ f)(x)− g(x)|2 dx < ε1, (19)
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where ε1 is a tolerated error.
The step 1 of the algorithm 1 is exactly the same as what is needed to solve

the original ROF model, whereas in step 2 by updating σ2, we can adjust the
influence of the smooth term. However, this algorithm is quite time-consuming
due to the large cost to repeatedly solve the minimization problem (14). To
overcome this difficulty, we modify the iterative scheme as following:

fn+1 − fn

∆t
= λ∇ ·

(
∇fn√

|∇fn|2 + β

)
− k̂ ∗ (k ∗ fn − g)

(σ2)n
, (20)

(σ2)n+1 =

∫
Ω
|(k ∗ fn+1)(x)− g(x)|2 dx

A
. (21)

Consequently, we only compute the formulas (20), (21) repeatedly, and the
cost of the modified algorithm is almost the same as the original ROF model.
Studying this process carefully, you can find that the energy E would be de-
scending in the iteration due to the formula (20) is actually a gradient descent
step. Experimental results show that the equations (20),(21) have similar ability
in reconstructing blurred and noisy images to the algorithm 1, but it is much
faster.

Compared with the ROF model, the G-TV model utilizes a statistical pa-
rameter σ2, the variance of noise. By updating σ2 in each iteration, we could
adaptively balance the deblurring and denoising. The numerical experiments
have shown that a satisfactory reconstruction result could be obtained within
only a few iterations. Moreover, due to the introduction of σ2, the choice of λ
is less sensitive than that of the ROF model. We will mention how to select λ
later.

Remark: The algorithm works well when the image is contaminated by blur and
various levels of uniform distributed noise. Meanwhile, it is still efficient even if there
is no noise (see experiment II).

3 GM-TV model

The above G-TV model is quite effective in reconstructing images with blur and uni-
form distributed noise without changing the regularization parameter λ directly. How-
ever, it still could not work well when the image is contaminated with blur and mixed
noise. So in this section we propose a new model to address this issue.

Assume at each point x ∈ Ω, the intensity of noise n(x) or (k ∗ f)(x) − g(x) is
a random variable and all the random variables {n(x)| x ∈ Ω} are independent and
identically-distributed with the following probability density function:

p(n(x)| Θ) =

MX
l=1

αlpl(n(x)| µl, σ
2
l ), (22)

where each pl is a Gaussian density function with mean µl and variance σ2
l , and

the parameter set Θ = {α1, · · · , αM , µ1, · · · , µM , σ2
1 , · · · , σ2

M} is chosen such that
MX

l=1

αl = 1. In other words, the probability density function (PDF) is a mixture of M

individual Gaussian components with different ratios.
By the same procedures as Section 2, we derive the cost functional

E(f,Θ) = E1(f,Θ) + λJ(f), (23)
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where

E1(f,Θ) =

Z
Ω

− ln

 
MX

l=1

αl

σl
exp


−|(k ∗ f)(x)− g(x)− µl|2

2σ2
l

ff!
dx, (24)

and

J(f) = Jβ(f) =

Z
Ω

p
|∇f |2 + β dx. (25)

Consequently, the task is to minimize the above cost functional under the con-

straint

MX
l=1

αl = 1.

We still use the AM algorithm to solve this problem:
Step 1. Find fn+1, such that

fn+1 = arg min
f

E(f,Θn); (26)

Step 2. Find Θn+1, such that

Θn+1 = arg min
Θ

E(fn+1,Θ) subject to

MX
l=1

αl = 1. (27)

In step 2, we need to estimate the parameters for a mixed PDF. The usual vari-
ational techniques are not suitable since it would result in an extremely complex
system of nonlinear equations. To address this difficulty, we resort to the Expectation-
Maximization (EM) algorithm [1, 5], an efficient algorithm for parameter estimation.
The detailed information regarding this algorithm could be found in [1, 14]. The EM
algorithm should be to iterate updating of αl and updating of µl and σ2

l until conver-
gence is achieved, with f fixed. Therefore, an expensive computational cost is required
for the two steps. In fact, the process of minimizing the cost functional defined in (27)
with EM algorithm is equivalent to minimizing another energy function (please see
ref.[1, 5]), and we can utilize the other energy functional with the same decreasing
behavior as the minimization in the step 2, so, we modify the energy E1(f,Θ) as
Ẽ1(f,Θ)

Ẽ1(f,Θ) =
1

2

MX
l=1

Z
Ω

|(k ∗ f)(x)− g(x)− µl|2

σ2
l

ωn
l (x)dx

+
1

2

MX
l=1

Z
Ω

ln(σ2
l )ωn

l (x)dx

−
MX

l=1

Z
Ω

ln(αl)ω
n
l (x)dx +

MX
l=1

Z
Ω

αldx,

(28)

where

ωn
l (x) = ωl(x| (k ∗ fn)(x)− g(x), Θn)

=

αn
l pl((k ∗ fn)(x)− g(x)| µn

l , (σ2
l )n)

MX
v=1

αn
v pv((k ∗ fn)(x)− g(x)| µn

v , (σ2
v)n)

. (29)

Ẽ1(f,Θ) has the same decreasing behavior as E1(f,Θ), so we replace E1(f,Θ)

6



with Ẽ1(f,Θ) and get the following cost functional

Ẽ(f,Θ) = Ẽ1(f,Θ) + λJ(f)

=
1

2

MX
l=1

Z
Ω

|(k ∗ f)(x)− g(x)− µl|2

σ2
l

ωn
l (x)dx

+
1

2

MX
l=1

Z
Ω

ln(σ2
l )ωn

l (x)dx

−
MX

l=1

Z
Ω

ln(αl)ω
n
l (x)dx +

MX
l=1

Z
Ω

αldx

+λ

Z
Ω

p
|∇f |2 + β dx.

(30)

Now, we can use the variational techniques to minimize the cost functional (30).
The detailed procedures can be found in Algorithm 2.

Algorithm 2: Choose initial values for f0, Θ0 and calculate ω0
l (x) by (29). For

n = 1, 2, · · · , do
1. Find fn+1, such that

fn+1 − fn

∆t
= λ∇ ·

 
∇fnp

|∇fn|2 + β

!
−

MX
l=1

k̂ ∗ (k ∗ fn − g − µn
l )ωn

l

(σ2
l )n

, (31)

2. Find Θn+1and ωn+1
l (x), such that

αn+1
l =

1

A

Z
Ω

ωn
l (x) dx, A =

Z
Ω

1 dx,

µn+1
l =

Z
Ω

((k ∗ fn+1)(x)− g(x))ωn
l (x) dxZ

Ω

ωn
l (x) dx

,

(σ2
l )n+1 =

Z
Ω

((k ∗ fn+1)(x)− g(x)− µn+1
l )2ωn

l (x) dxZ
Ω

ωn
l (x) dx

,

ωn+1
l (x) =

αn+1
l pl((k ∗ fn+1)(x)− g(x)| µn+1

l , (σ2
l )n+1)

MX
v=1

αn+1
v pv((k ∗ fn+1)(x)− g(x)| µn+1

v , (σ2
v)n+1)

,

l = 1, 2, · · · , M,

(32)

here

pl((k∗fn+1)(x)−g(x)| µn+1
l , (σ2

l )n+1) =
1p

2π(σ2
l )n+1

exp{−
|(k ∗ fn+1)(x)− g(x)− µn+1

l |2

2(σ2
l )n+1

}.

(33)
The above approach is called GM-TV model.

The key point of this model is the introduction of ωn
l (x),which could be deter-

mined by formulas in (32). For every point x ∈ Ω, we have 0 6 ωn
l (x) 6 1 and

MX
l=1

ωn
l (x) = 1. So ωn

l (x) can be viewed as a weight about the M individual deblurring

components(please see the last term of (31)). If M = 1, we get ωn
l (x) = 1. Therefore

for fixed constants αl, σ
2
l , µl, the minimization problem (30) would become the ROF

model.
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Moreover, assume that the means (µl, l = 1, 2, · · · , M) of noise are all zeros, and
the first term of (30) is written in the algebraic form, this fit-to-data term would
become:

1

2
||K~f − ~g||2R =

1

2
[(K~f − ~g)TR(K~f − ~g)],

where R is a diagonal matrix containing weight coefficients that are determined by σ2
l

and ωn
l (x). This is mentioned in reference [18], and we here give a new method which

how to adaptively choose R according to the local variances of noise.

4 Numerical Methods and Experimental Results.

In this section, we develop the discrete scheme of the GM-TV Model based on the
finite difference methods. The numerical scheme corresponding to the G-TV model in
Section 2 could be deduced in the same manner. Suppose the image size is N1 × N2

and let gi,j be the discrete form of g(x) (i = 1, · · · , N1, j = 1, · · · , N2).
By applying the standard five-point finite difference scheme [15], the discrete equa-

tion for (31) is
fn+1

ij − fn
ij

4t
= λsn

ij(f)− vn
ij(f), (34)

where

sn
ij(f) :=

T xx
ij (f)(T y

ij(f)2 + β)− 2T xy
ij (f)T x

ij(f)T y
ij(f) + T yy

ij (f)(T x
ij(f)2 + β)

(T x
ij(f)2 + T y

ij(f)2 + β)
3
2

, (35)

and

vn
ij(f) :=

 
MX

l=1

k̂ ∗ (k ∗ fn − g − µn
l )ωn

l

(σ2
l )n

!
ij

. (36)

Some notations in the above equations are computed as following:

ωn
l =

αn
l pl((k ∗ fn − g)| µn

l , (σ2
l )n)

MX
v=1

αn
v pv((k ∗ fn − g)| µn

v , (σ2
v)n)

,

T x
ij(f) =

fn
i+1,j − fn

i−1,j

2
,

T y
ij(f) =

fn
i,j+1 − fn

i,j−1

2
,

T xx
ij (f) = fn

i+1,j − 2fn
i,j + fn

i−1,j ,

T yy
ij (f) = fn

i,j+1 − 2fn
i,j + fn

i,j−1,

T xy
ij (f) =

fn
i+1,j+1 − fn

i−1,j+1 − fn
i+1,j−1 + fn

i−1,j−1

4
.

(37)

The Neumann boundary condition for f(x) is discretized as

f0,j = f1,j , fN1+1,j = fN1,j , fi,0 = fi,1, fi,N2+1 = fi,N2 . (38)

Therefore, the iterative formula for solving fn+1
ij can be summarized as

fn+1
ij = fn

ij +4t(λsn
ij(f)− vn

ij(f)). (39)
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The discrete scheme for (32) is

αn+1
l =

1

A

X
i,j

(ωn
l )ij , A = N1 ×N2,

µn+1
l =

X
i,j

((k ∗ fn+1)ij − gij)(ω
n
l )ij

X
i,j

(ωn
l )ij

,

(σ2
l )n+1 =

X
i,j

((k ∗ fn+1)ij − gij − µn+1
l )2(ωn

l )ij

X
i,j

(ωn
l )ij

,

(ωn+1
l )ij =

αn+1
l pl((k ∗ fn+1)ij − gij | µn+1

l , (σ2
l )n+1)

MX
v=1

αn+1
v pv((k ∗ fn+1)ij − gij | µn+1

v , (σ2
v)n+1)

,

l = 1, 2, · · · , M.

(40)

In summary, the algorithm 2 can be implemented by the following procedures:
1. Choose M,4t, β, initial values for f0 = g, Θ0 = {α0

1, · · · , α0
M , µ0

1, · · · , µ0
M , (σ2

1)0, · · · , (σ2
M )0}

and calculate ω0
l , l = 1, 2, · · · , M by (40);

2. Find fn+1 by computing(39);
3. (The EM algorithm step) Compute (40) to get Θn+1 and ωn+1

l , l = 1, 2, · · · , M ;

4. If
X
i,j

((k ∗ fn+1)ij − gij)
2 ≥ ε, go to 2, otherwise, stop.

In this paper, all the convolutions are computed using the discrete cosine trans-
formation (DCT) [10, 12].

As in [16], we introduce the following indexes

SNR = 10 · log10

0BBB@
X
ij

(f2
ij)X

ij

n2
ij

1CCCA ,

BSNR = 10 · log10

0BBB@
X
ij

((k ∗ f)ij − f̄)2

X
ij

n2
ij

1CCCA ,

ISNR = 10 · log10

0BBB@
X
ij

(fij − gij)
2

X
ij

(fij − fnew
ij )2

1CCCA ,

(41)

where f̄ =
1

N1N2

X
ij

fij , fnew is the reconstructed image and as in Section 1, f , g and

n denote the original clear image, contaminated image and noise data respectively.
Formulas in (41) are used to measure the level of noise, the ratio of blur and noise
and the improvement of signal quality. Obviously, the larger the ISNR, the better
the reconstructed image.
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As we mentioned earlier, the performances of our models are less sensitive to the
parameter λ than the ROF model’s. But this does not mean that we can randomly
choose λ as it could affect the speed of image recovery. Experiments show that thou-
sands of iterations are needed to reconstruct images with heavy noise if we set λ to
be 1, but much fewer iterations are enough if we use a bigger λ. Another thing we
want to point out is that we observed that the visual effect looks similar if the λ is
chosen from the interval [5, 100]. So, except for experiment I, we set λ to be 5 in all
the following experiments.

Other parameters in our models are selected as following: the time step 4t =
1.0× 10−4, the stabilizing parameter β = 1.0× 10−6, (σ2)0 = 0.1 for the G-TV model
and M = 3 for the GM-TV model. Initial parameters are set to be α0

l = 1
3
, µ0

l =

0, (σ2
l )0 = 1.0× 10−l for l = 1, 2, 3 in the GM-TV model. All images mentioned here

range in intensity from 0 to 1 and the means of additive noise are all set to be zeros.
Next we present the computational results of the proposed models. The original

images (denoted by f) are shown in Figure 2: the left one is a clean 256× 256 Lenna
image and the right one represents a piecewise constant 256× 256 image with simple
objects.

Figure 2: the original images for our experiments.

We begin with experiment I to test the influence of the parameter λ. Figure 3
shows the reconstructed results of the GM-TV model with different λs. The middle
one is the result for λ = 1, which takes 1000 iterations. And the right is the one for
λ = 200, with 200 iterations. It can be seen that the right one is only a little smoother
than the middle one, and required much less iterations.

Figure 3: From left: the noisy and blurred image, restored by the GM-TV model
with λ = 1 , λ = 200.

The purpose of experiment II is to show that algorithm 1 is robust with respect to
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noise. The upper row in Figure 4 contains the contaminated images, with the levels
of noise increasing from left to right (the left one is a blurred image with no noise).
Corresponding reconstructed images are shown in the lower row. From these results,
we can conclude that the G-TV model works well with different levels of noise without
changing any parameters.

Figure 4: Top: the blurred images with different levels of noise; bottom: restored
by the G-TV model.

The purpose of the third experiment (experiment III ) is to demonstrate that the
three models (ROF, G-TV, GM-TV) have similar ability in reconstructing images with
blur and Gaussian uniform distributed noise. In Figure 5, the top left is the contam-
inated image with Gaussian blurred and Gaussian uniform distributed white noise.
The standard deviation in the Gaussian blur kernel and the variance of noise are 3.0,
1.0×10−3 respectively. And the corresponding measures are SNR = 25.112, BSNR =
15.2396. The top right, bottom left and bottom right are the the restored images using
the ROF model, G-TV model and GM-TV model. The regularization parameter for
the ROF model is λ = 8.0 × 10−3. Corresponding ISNRs (improvement of signal
quality) are summarized in Table 1.

ROF G-TV GM-TV
ISNR 2.1950 2.3920 2.3923

Table 1: the ISNRs of the reconstructed images using the previous three models.

In this particular case, the reconstructed results of these three models have similar
visual effects and the proposed GM-TV model appears to have no superiority. How-
ever, we need to select a proper λ for the ROF model to deal with the different levels
of noise, whereas λ can be quite arbitrary for the proposed two models. Regardless
of the selection for λ, the ROF model has a comparable reconstructing ability as the
G-TV model. So in the following experiments, more attention is focused on the G-TV
and GM-TV models.
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Figure 5: Top left: the blurred image with uniform Gaussian noise; top right: the
result of the ROF model; bottom left: the result of the G-TV model; bottom right:
the result of the GM-TV model

The purpose of the fourth experiment(experiment IV) is to show the superiority
of the GM-TV model in reconstructing images with mixed noise and different types
of blur. In Figure 6, the top left is a Gaussian blurred (σ = 2.0) Lenna image of
two mixed Gaussian white noise (σ2

1 = 1.5 × 10−2, σ2
2 = 2.5 × 10−4) with ratio 1 : 3

(SNR = 19.2884, BSNR = 9.8200); the bottom left is a blurred (a motion blur kernel
of length=25, oriented at an angle θ = 0 ◦ with respect to the horizontal line) image
of three mixed Gaussian noise (σ2

1 = 1.25 × 10−2, σ2
2 = 2.5 × 10−4, σ2

3 = 5.0 × 10−6)
with the ratio is 1 : 1 : 2 (SNR = 23.9096, BSNR = 11.6780). The reconstructed
results using the G-TV and GM-TV model are shown in the second and third column.
Obviously, results in the last column are much clearer than those in the second column.

Experiment V illustrates that the proposed GM-TV model could effectively recover
objects from images with blur and salt-and-pepper noise. The reason is that the
salt-and-pepper noise could be approximately viewed as a mixture of two kinds of
noise with different means and variances. The test images are presented in the first
column with SNR = 13.5556, 7.5284, 3.570 and BSNR = 3.6831,−2.3441,−6.3025
respectively. The experiment results (Figure 7) reveal that GM-TV model could get a
more satisfactory reconstructed results. The ISNRs of the previous experiments are
summarized in Table 2.

Until now, it is clear that the reconstructed results of the GM-TV model are much
better not only visually but also numerically. Therefore, we can conclude that the
GM-TV model is superior than other models in reconstructing objects from blurred
and mixed noisy images.
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Figure 6: First Row: the Gaussian blurred and mixed noisy Lenna image, reconstruc-
tions obtained with the G-TV model and GM-TV model; Second Row: the blurred
and mixed noisy image, reconstructions obtained with the G-TV model and GM-TV
model.

Experiment G-TV GM-TV
3.6378 5.1154

IV 4.0162 7.6336
5.4283 8.5004

V 8.8304 13.5407
9.6090 17.4579

Table 2: Comparison of ISNRs for previous experiments.

5 Conclusion and Discussion

In this paper, we present a new approach to adaptively reconstruct images from blurred
and mixed noisy data. From the above experiments, we can see that this model could
be used to remove Gaussian uniform distributed white noise as well as nonuniform
distributed noise. We want to mention that the performance of the GM-TV model is
not sensitive to the parameter M . In real applications we usually set M to be 2 or
3, which is enough to achieve good reconstructed results. Larger M would result in a
more satisfactory estimation of mixed noise while more computational cost is required
at the same time.

The algorithm is fast, robust and stable. Computation time for 256× 256 images
is about 50 seconds, using MATLAB on a Pentium(R)4 3.0GHz PC. Whereas for
the highly contaminated case (the third one in experiment V), the computation time
tends to be longer (about 3 minutes).

Recall that the G-TV model and GM-TV model are deduced from probability
density function (PDF), so we could get an estimated PDF of noise for the G-TV
model and GM-TV model. Theoretically, these estimators should be close to the true
ones to guarantee satisfactory reconstructed results. Figure 8 contains some estimators
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Figure 7: First Column: images with Gaussian blurred(σ = 3.0) and salt-and-pepper
noise(0.05, 0.2, 0.5); Second Column: the reconstructions of the first column using
the G-TV model; Third Column: the reconstructions of the first column using the
GM-TV model.

of the results in the experiments. Clearly, the dash line (estimated by the GM-TV) is
much closer to the solid (true) than the dots line (estimated by the G-TV). Therefore,
it is reasonable that the GM-TV model outperforms the G-TV model in recovering
objects from mixed noisy data.

Finally, we have not given the theoretical results of the proposed GM-TV model,
such as the existence and uniqueness of the regularized solution. These aspects are
left for the future research.
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Figure 8: Top: The natural logarithm of probability density function(lnPDF) of noise
in experiment IV for Lenna image,the solid line represents the true lnPDF of noise,the
dots line indicates the estimated lnPDF by the G-TV model and the one by the GM-
TV model is indicated by the dash line; Bottom: The same as top for experiment
V,the level of salt-and-pepper noise is 0.5.
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